Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 113-126.

Voir la notice de l'article provenant de la source Library of Science

In the paper, we prove the existence of solutions and Carathéodory's type solutions of the dynamic Cauchy problem
Keywords: Cauchy dynamic problem, Banach space, measure of noncompactness, Carathéodory's type solutions, time scales, fixed point
@article{DMDICO_2009_29_1_a7,
     author = {Kubiaczyk, Ireneusz and Sikorska-Nowak, Aneta},
     title = {Existence of solutions of the dynamic {Cauchy} problem on infinite time scale intervals},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {113--126},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2009},
     zbl = {1198.34197},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a7/}
}
TY  - JOUR
AU  - Kubiaczyk, Ireneusz
AU  - Sikorska-Nowak, Aneta
TI  - Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2009
SP  - 113
EP  - 126
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a7/
LA  - en
ID  - DMDICO_2009_29_1_a7
ER  - 
%0 Journal Article
%A Kubiaczyk, Ireneusz
%A Sikorska-Nowak, Aneta
%T Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2009
%P 113-126
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a7/
%G en
%F DMDICO_2009_29_1_a7
Kubiaczyk, Ireneusz; Sikorska-Nowak, Aneta. Existence of solutions of the dynamic Cauchy problem on infinite time scale intervals. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 113-126. http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a7/

[1] R.P. Agarwal and M. Bohner, Basic calculus on time scales and some of its applications, Result Math. 35 (1999), 3-22.

[2] R.P. Agarwal, M. Bohner and A. Peterson, Inequalities on time scales: a survey, Math. Inequal. Appl. 4 (4) (2001), 535-557.

[3] R.P. Agarwal and D. O'Regan, Nonlinear boundary value problems on time scales, Nonlin. Anal. TMA 44 (2001), 527-535.

[4] R.P. Agarwal and D. O'Regan, Difference equations in Banach spaces, J. Austral. Math. Soc. (A) 64 (1998), 277-284.

[5] R.P. Agarwal and D. O'Regan, A fixed point approach for nonlinear discrete boundary value problems, Comp. Math. Appl. 36 (1998), 115-121.

[6] R.P. Agarwal, D. O'Regan and S.H. Saker, Properties of bounded solutions of nonlinear dynamic equations on time scales, Can. Appl. Math. Q. 14 (1) (2006), 1-10.

[7] E. Akin-Bohner, M. Bohner and F. Akin, Pachpate inequalities on time scale, J. Inequal. Pure and Appl. Math. 6 (1) Art. 6, (2005).

[8] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova 39 (1967), 349-361.

[9] G. Aslim and G.Sh. Guseinov, Weak semiring, ω-semirings, and measures, Bull. Allahabad Math. Soc. 14 (1999), 1-20.

[10] B. Aulbach and S. Hilger, Linear dynamic processes with inhomogeneous time scale, Nonlinear Dynamics and Quantum Dynamical Systems, Akademie Verlag, Berlin, 1990.

[11] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math. 60, Dekker, New York and Basel, 1980.

[12] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkäuser, 2001.

[13] M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkäuser, Boston, 2003.

[14] A. Cellina, On existence of solutions of ordinary differential equations in Banach spaces, Func. Ekvac. 14 (1971), 129-136.

[15] M. Cichoń, On solutions of differential equations in Banach spaces, Nonlin. Anal. TMA 60 (2005), 651-667.

[16] M. Dawidowski, I. Kubiaczyk and J. Morchało, A discrete boundary value problem in Banach spaces, Glasnik Mat. 36 (2001), 233-239.

[17] R. Dragoni, J.W. Macki, P. Nistri and P. Zecca, Solution Sets of Differential Equations in Abstract Spaces, Longmann, 1996.

[18] L. Erbe and A. Peterson, Green's functions and comparison theorems for differential equations on measure chains, Dynam. Contin. Discrete Impuls. Systems 6 (1) (1999), 121-137.

[19] G.Sh. Guseinov, Integration on time scales, J. Math. Anal. Appl. 285 (2003), 107-127.

[20] C. Gonzalez and A. Jimenez-Meloda, Set-contractive mappings and difference equations in Banach spaces, Comp. Math. Appl. 45 (2003), 1235-1243.

[21] S. Hilger, Ein Maßkettenkalkül mit Anvendung auf Zentrumsmannigfaltigkeiten, PhD thesis, Universität at Würzburg, 1988.

[22] S. Hilger, Analysis on measure chains - a unified approach to continuous and discrete calculus, Results Math. 18 (1990), 18-56.

[23] B. Kaymakcalan, V. Lakshmikantham and S. Sivasundaram, Dynamical Systems on Measure Chains, Kluwer Akademic Publishers, Dordrecht, 1996.

[24] I. Kubiaczyk, On the existence of solutions of differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 33 (1985), 607-614.

[25] B.N. Sadovskii, Limit-compact and condensing operators, Russian Math. Surveys 27 (1972), 86-144.

[26] S. Szufla, Measure of noncompanctness and ordinary differential equations in Banach spaces, Bull. Polish Acad. Sci. Math. 19 (1971), 831-835.