@article{DMDICO_2009_29_1_a4,
author = {Ahmed, N.},
title = {Topological dual of $B_\ensuremath{\infty}(I, ₁(X,Y))$ with application to stochastic systems on {Hilbert} space},
journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
pages = {67--90},
year = {2009},
volume = {29},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a4/}
}
TY - JOUR AU - Ahmed, N. TI - Topological dual of $B_∞(I, ₁(X,Y))$ with application to stochastic systems on Hilbert space JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2009 SP - 67 EP - 90 VL - 29 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a4/ LA - en ID - DMDICO_2009_29_1_a4 ER -
%0 Journal Article %A Ahmed, N. %T Topological dual of $B_∞(I, ₁(X,Y))$ with application to stochastic systems on Hilbert space %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2009 %P 67-90 %V 29 %N 1 %U http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a4/ %G en %F DMDICO_2009_29_1_a4
Ahmed, N. Topological dual of $B_∞(I, ₁(X,Y))$ with application to stochastic systems on Hilbert space. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 67-90. http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a4/
[1] J. Diestel and J.J. Uhl. Jr, Vector Measures, American Mathematical Society, Providence, Rhode Island, 1977.
[2] N. Dunford and J.T. Schwartz, Linear Operators, Part 1, General Theory, Second Printing, 1964.
[3] N.U. Ahmed, Dynamics of Hybrid systems induced by operator-valued measures, Nonlinear Analysis, Hybrid Systems 2 (2008), 359-367.
[4] N.U. Ahmed, Vector and operator-valued measures as controls for infinite dimensional systems: optimal control, Differential Inclusions, Control and Optimization 28 (2008), 165-189.
[5] N.U. Ahmed, Impulsive perturbation of C₀-semigroups by operator-valued measures, Nonlinear Funct. Anal. Appl. 9 (1), (2004), 127-147.
[6] N.U. Ahmed, State dependent vector measures as feedback controls for impulsive systems in Banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems (B) 8 (2001), 251-261.