Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2009_29_1_a1, author = {Przeworska-Rolewicz, Danuta}, title = {Fourier-like methods for equations with separable variables}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {19--42}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2009}, zbl = {1205.47010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a1/} }
TY - JOUR AU - Przeworska-Rolewicz, Danuta TI - Fourier-like methods for equations with separable variables JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2009 SP - 19 EP - 42 VL - 29 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a1/ LA - en ID - DMDICO_2009_29_1_a1 ER -
%0 Journal Article %A Przeworska-Rolewicz, Danuta %T Fourier-like methods for equations with separable variables %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2009 %P 19-42 %V 29 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a1/ %G en %F DMDICO_2009_29_1_a1
Przeworska-Rolewicz, Danuta. Fourier-like methods for equations with separable variables. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 29 (2009) no. 1, pp. 19-42. http://geodesic.mathdoc.fr/item/DMDICO_2009_29_1_a1/
[1] A. Favini, Sum of operators' method in abstract equations, in: Partial Differential Equations, Progr. Nonlinear Differential Equations Appl. 22 (Burkhäuser, Boston, 1996) 132-146.
[2] V. Lovass-Nagy and D.L. Powers, On under- and over-determined initial value problems, Int. J. Control 19 (1974), 653-656.
[3] P. Multarzyński, On some right invertible operators in differential spaces, Demonstratio Math. 37 (4) (2004), 905-920.
[4] P. Multarzyński, On divided difference operators in function algebras, Demonstratio Math. 41 (2) (2008), 273-289.
[5] W. Pogorzelski, Integral Equations and Their Applications, 1-st Polish ed. Vol. I-1953, Vol. II-1958, Vol. III-1960; PWN-Polish Scientific Publishers, Warszawa; English ed. Pergamon Press and PWN-Polish Scientific Publishers, Oxford-Warszawa, 1966.
[6] D. Przeworska-Rolewicz, Remarks on boundary value problems and Fourier method for right invertible operators, Math. Nachrichten 72 (1976), 109-117.
[7] D. Przeworska-Rolewicz, Algebraic Analysis, D. Reidel and PWN-Polish Scientific Publishers, Dordrecht-Warszawa, 1988.
[8] D. Przeworska-Rolewicz, Logarithms and Antilogarithms. An Algebraic Analysis Approach. With Appendix by Z. Binderman, Kluwer Academic Publishers, Dordrecht, 1998.
[9] D. Przeworska-Rolewicz, Linear combinations of right invertible operators in commutative algebras with logarithms, Demonstratio Math. 31 (4) (1998), 887-898.
[10] D. Przeworska-Rolewicz, Postmodern Logarithmo-technia, Computers and Mathematics with Applications 41 (2001), 1143-1154.
[11] D. Przeworska-Rolewicz, Non-Leibniz algebras with logarithms do not have the trigonometric identity, in: Algebraic Analysis and Related Topics, Proc. Intern. Conf. Warszawa, September 21-25, 1999. Banach Center Publications, 53. Inst. of Math., Polish Acad. of Sci., Warszawa, 2000, 177-189.
[12] D. Przeworska-Rolewicz, Algebraic Analysis in structures with Kaplansky-Jacobson property, Studia Math. 168 (2) (2005), 165-186.
[13] D. Przeworska-Rolewicz, Some summations formulae in commutative Leibniz algebras with logarithms, Control and Cybernetics 36 (3) (2007), 841-857.
[14] D. Przeworska-Rolewicz, Sylvester inertia law in commutative Leibniz algebras with logarithms, Demonstratio Math. 40 (2007), 659-669.
[15] D. Przeworska-Rolewicz, Nonlinear separable equations in linear spaces and commutative Leibniz algebras. Preprint 691, Institute of Mathematics, Polish Academy of Sciences, Warszawa, September 2008; http//www.impan.pl/Preprints/p691; Annales Polon. Math. (to appear).
[16] D. Przeworska-Rolewicz, Fourier-like methods for equations with separable variables. Preprint 693, Institute of Mathematics, Polish Academy of Sciences, Warszawa, October 2008; http//www.impan.pl/Preprints/p693.
[17] G. Virsik, Right inverses of vector fields, J. Austral. Math. Soc. (Series A), 58 (1995), 411-420.