Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2008_28_1_a7, author = {Ahmed, N.}, title = {Optimal control of systems determined by strongly nonlinear operator valued measures}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {165--189}, publisher = {mathdoc}, volume = {28}, number = {1}, year = {2008}, zbl = {1191.35160}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a7/} }
TY - JOUR AU - Ahmed, N. TI - Optimal control of systems determined by strongly nonlinear operator valued measures JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2008 SP - 165 EP - 189 VL - 28 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a7/ LA - en ID - DMDICO_2008_28_1_a7 ER -
%0 Journal Article %A Ahmed, N. %T Optimal control of systems determined by strongly nonlinear operator valued measures %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2008 %P 165-189 %V 28 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a7/ %G en %F DMDICO_2008_28_1_a7
Ahmed, N. Optimal control of systems determined by strongly nonlinear operator valued measures. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 165-189. http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a7/
[1] N.U. Ahmed, Differential inclusions, operator valued measures and optimal control, Special Issue of Dynamic Systems and Applications, Set-Valued Methods in Dynamic Systems, Guest Editors: M. Michta and J. Motyl 16 (2007), 13-36.
[2] N.U. Ahmed, Evolution equations determined by operator valued measures and optimal control, Nonlinear Analysis 67 (2007), 3199-3216.
[3] N.U. Ahmed, Vector and operator valued measures as controls for infinite dimensional systems: optimal control, Discuss. Math. Differential Inclusions Control and Optimization 28 (2008), 95-131.
[4] N.U. Ahmed, A class of semilinear parabolic and hyperbolic systems determined by operator valued measures, DCDIS 14 (4) (2007).
[5] N.U. Ahmed, Parabolic systems determined by strongly nonlinear operator valued measures, Nonlinear Analysis, Special Issue (Felicitation of Professor V. Lakshmikantham on his 85th birth date).
[6] N.U. Ahmed, Optimization and Identification of Systems Governed by Evolution Equations on Banach Spaces, Pitman Research Notes in Mathematics Series 184, Longman Scientific and Technical, U.K. and co-publisher John Wiley, New York, 1988.
[7] N.U. Ahmed, K.L. Teo and S.H. Hou, Nonlinear impulsive systems on infinite dimensional spaces, Nonlinear Analysis 54 (2003), 907-925.
[8] N.U. Ahmed, Some remarks on the dynamics of impulsive systems in Banach spaces, DCDIS 8 (2001), 261-274.
[9] N.U. Ahmed, Impulsive perturbation of C₀-semigroups by operator valued measures, Nonlinear Functional Analysis Applications 9 (1) (2004), 127-147.
[10] N.U. Ahmed, Existence of optimal controls for a general class of impulsive systems on Banach spaces, SIAM J. Control. Optim. 42 (2) (2003), 669-685.
[11] J. Diestel and J.J. Uhl, Jr., Vector Measures, Mathematical Surveys, no. 15, American Mathematical Society, Providence, Rhode Island, 1977.
[12] N. Dunford and J.T. Schwartz, Linear Operators, Part 1: General Theory, Interscience Publishers, Inc., New York, London, 1958, 1964.
[13] H.O. Fattorini, Infinite Dimensional Optimization and Control Theory, Encyclopedia of Mathematics and its Applications, Vol. 62, Cambridge University, Cambridge, U.K., 1999.