Asymptotic behaviour of solutions of difference equations in Banach spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 5-13.

Voir la notice de l'article provenant de la source Library of Science

In this paper we consider the first order difference equation in a Banach space
Keywords: Banach space, difference equation, fixed point, measure of noncompactness, asymptotic behaviour of solutions
@article{DMDICO_2008_28_1_a0,
     author = {Kisio{\l}ek, Anna},
     title = {Asymptotic behaviour of solutions of difference equations in {Banach} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {5--13},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2008},
     zbl = {1182.39001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a0/}
}
TY  - JOUR
AU  - Kisiołek, Anna
TI  - Asymptotic behaviour of solutions of difference equations in Banach spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2008
SP  - 5
EP  - 13
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a0/
LA  - en
ID  - DMDICO_2008_28_1_a0
ER  - 
%0 Journal Article
%A Kisiołek, Anna
%T Asymptotic behaviour of solutions of difference equations in Banach spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2008
%P 5-13
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a0/
%G en
%F DMDICO_2008_28_1_a0
Kisiołek, Anna. Asymptotic behaviour of solutions of difference equations in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 28 (2008) no. 1, pp. 5-13. http://geodesic.mathdoc.fr/item/DMDICO_2008_28_1_a0/

[1] O. Arino, S. Gautier and J.P. Penot, A fixed point theorem for sequentially continous mappings with application to ordinary differential equations, Func. Ekvac. 27 (1984), 273-279.

[2] J.M. Ball, Properties of mappings and semigroups, Proc. Royal. Soc. Edinburg Sect. (A) 72 (1973/74), 275-280.

[3] J. Banaś and K. Goebel, Measures of noncompactness in Banach spaces, Lecture Notes in Pure and Applied Mathematics, 60, Marcel Dekker, New York-Basel, 1980.

[4] J. Banaś and J. Rivero, Measures of weak noncompactness, Ann. Math. Pura Appl. 125 (1987), 213-224.

[5] G. Darbo, Punti uniti in transformazioni a codominio non compatto, Rend. Sem. Mat. Univ. Padova 24 (1955), 84-92.

[6] M. Dawidowski, I. Kubiaczyk and J. Morchało, A discrete boundary value problem in Banach spaces, Glasnik Mathematicki, 36 56(2001), 233-239.

[7] F.S. de Blasi, On a property of the unit sphere in Banach space, Bull. Math. Soc. Sci. Math. R.S. Raumannie 21 (1997), 259-262.

[8] C. Gonzalez and A. Jimenez-Melado, An application of Krasnoselskii fixed point theorem to the asymptotic behavior of solutions of difference equations in Banach spaces, J. Math. Anal. Appl. 247 (2000), 290-299.

[9] C. Gonzalez and A. Jimenez-Melado, Asymptitic behaviour of solutions of difference equations in Banach spaces, Proc. Amer. Math. Soc., 128 (6) (2000), 1743-1749.

[10] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mapping, Discuss. Math. Diff. Incl. 15 (1995), 15-20.

[11] A.R. Mitchell and C. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear equations in abstract spaces, V. Lakshmikantham, ed. 387-404, Orlando, 1978.