Fixed point and homotopy result for mappings satisfying an implicit relation
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 349-363.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we prove some fixed point theorems for single valued mappings satisfying an implicit relation on space with two metrics. In addition we give a homotopy result using our theorems.
Keywords: fixed point, implicit relation, homotopy result
@article{DMDICO_2007_27_2_a6,
     author = {Altun, I. and Turkoglu, D.},
     title = {Fixed point and homotopy result for mappings satisfying an implicit relation},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {349--363},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     zbl = {1152.54350},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a6/}
}
TY  - JOUR
AU  - Altun, I.
AU  - Turkoglu, D.
TI  - Fixed point and homotopy result for mappings satisfying an implicit relation
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2007
SP  - 349
EP  - 363
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a6/
LA  - en
ID  - DMDICO_2007_27_2_a6
ER  - 
%0 Journal Article
%A Altun, I.
%A Turkoglu, D.
%T Fixed point and homotopy result for mappings satisfying an implicit relation
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2007
%P 349-363
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a6/
%G en
%F DMDICO_2007_27_2_a6
Altun, I.; Turkoglu, D. Fixed point and homotopy result for mappings satisfying an implicit relation. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 349-363. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a6/

[1] R.P. Agarwal and D. O'Regan, Fixed point theory for generalized contraction on space with two metrics, J. Math. Anal. Appl. 248 (2000), 402-414.

[2] R.P. Agarwal, D. O'Regan and M. Sambandham, Random and deterministic fixed point theory for generalized contractive maps, Appl. Anal. 83 (7) (2004), 711-725.

[3] G.E. Hardy and T.G. Rogers, A generalization of a fixed point theorem of Riech, Canad. Math. Bull. 16 (1973), 201-206.

[4] M. Imdad, S. Kumar and M.S. Khan, Remarks on some fixed point theorems satisfying implicit relations, Rad. Math. 11 (1) (2002), 135-143.

[5] V. Popa, A general coincidence theorem for compatible multivalued mappings satisfying an implicit relation, Demonstratio Math. 33 (1) (2000), 159-164.

[6] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math. 32 (1) (1999), 157-163.

[7] S. Sharma and B. Desphande, On compatible mappings satisfying an implicit relation in common fixed point consideration, Tamkang J. Math. 33 (3) (2002), 245-252.