Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2007_27_2_a5, author = {Abada, Nadjat and Benchohra, Mouffak and Hammouche, Hadda and Ouahab, Abdelghani}, title = {Controllability of impulsive semilinear functional differential inclusions with finite delay in {Fr\'echet} spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {329--347}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a5/} }
TY - JOUR AU - Abada, Nadjat AU - Benchohra, Mouffak AU - Hammouche, Hadda AU - Ouahab, Abdelghani TI - Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2007 SP - 329 EP - 347 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a5/ LA - en ID - DMDICO_2007_27_2_a5 ER -
%0 Journal Article %A Abada, Nadjat %A Benchohra, Mouffak %A Hammouche, Hadda %A Ouahab, Abdelghani %T Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2007 %P 329-347 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a5/ %G en %F DMDICO_2007_27_2_a5
Abada, Nadjat; Benchohra, Mouffak; Hammouche, Hadda; Ouahab, Abdelghani. Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 329-347. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a5/
[1] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific Technical, Harlow John Wiley Sons, Inc., New York, 1991.
[2] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin, 1995.
[3] B. Amir and L. Maniar, Application de la théorie d'extrapolation pour la résolution des équations différentielles à retard homogènes, Extracta Math. 13 (1998), 95-105.
[4] B. Amir and L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of nondense domain, Ann. Math. Blaise Pascal 6 (1999), 1-11.
[5] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplacian Transforms and Cauchy Problems, Monographs Math, Vol. 96, Birkhäuser Verlag, 2001.
[6] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Controllability results for impulsive functional differential inclusions, Rep. Math. Phys. 54 (2004), 211-227.
[7] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Existence results for nondensely defined impulsive semilinear functional differential equations, Nonlinear Analysis and Applications, edited by R.P. Agarwal and D. O'Regan, Kluwer, 2003.
[8] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 2006.
[9] M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal. 61 (2005), 405-423.
[10] G. Da Prato and E. Grisvard, On extrapolation spaces, Rend. Accad. Naz. Lincei. 72 (1982), 330-332.
[11] G. Da Prato and E. Sinestrari, Differential operators with non-dense domains, Ann. Scuola Norm. Sup. Pisa Sci. 14 (1987), 285-344.
[12] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.
[13] M. Frigon, Fixed Point Results for Multivalued Contractions on Gauge Spaces, Set Valued Mappings with Applications in Nonlinear Analysis, 175-181, Ser. Math. Anal. Appl. 4, Taylor Francis, London, 2002.
[14] E.P. Gatsori, L. Górniewicz and S.K. Ntouyas, Controllability results for nondensely defined evolution impulsive differential inclusions with nonlocal conditions, Panamer. Math. J. 15 (2) (2005), 1-27.
[15] G. Guhring, F. Rabiger and W. Ruess, Linearized stability for semilinear non-autonomous evolution equations to retarded differential equations, Differential Integral Equations 13 (2000), 503-527.
[16] J. Henderson and A. Ouahab, Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces, Electron. J. Qual. Theory Differ. Equ. (2005), (11), 1-17.
[17] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.
[18] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.
[19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, 1995.
[20] L. Maniar and A. Rhandi, Extrapolation and inhomogeneous retarded differential equations on infinite-dimensional spaces, Circ. Mat. Palermo 47 (2) (1998), 331-346.
[21] R. Nagel and E. Sinestrari, Inhomogeneous Volterra Integrodifferential Equations for Hille-Yosida operators, In Functional Analysis, edited by K.D. Bierstedt, A. Pietsch, W.M. Ruess and D. Voigt, 51-70, Marcel Dekker, 1998.
[22] J. Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math. 1529, Springer-Verlag, New York, 1992.
[23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.
[24] M.D. Quinn and N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory, pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984-85), 197-219.
[25] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.