Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 329-347.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we use the extrapolation method combined with a recent nonlinear alternative of Leray-Schauder type for multivalued admissible contractions in Fréchet spaces to study the existence of a mild solution for a class of first order semilinear impulsive functional differential inclusions with finite delay, and with operator of nondense domain in original space.
Keywords: semilinear functional differential inclusions, impulses, mild solution, fixed point, controllability, extrapolation space, nondensely defined operator
@article{DMDICO_2007_27_2_a5,
     author = {Abada, Nadjat and Benchohra, Mouffak and Hammouche, Hadda and Ouahab, Abdelghani},
     title = {Controllability of impulsive semilinear functional differential inclusions with finite delay in {Fr\'echet} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {329--347},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a5/}
}
TY  - JOUR
AU  - Abada, Nadjat
AU  - Benchohra, Mouffak
AU  - Hammouche, Hadda
AU  - Ouahab, Abdelghani
TI  - Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2007
SP  - 329
EP  - 347
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a5/
LA  - en
ID  - DMDICO_2007_27_2_a5
ER  - 
%0 Journal Article
%A Abada, Nadjat
%A Benchohra, Mouffak
%A Hammouche, Hadda
%A Ouahab, Abdelghani
%T Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2007
%P 329-347
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a5/
%G en
%F DMDICO_2007_27_2_a5
Abada, Nadjat; Benchohra, Mouffak; Hammouche, Hadda; Ouahab, Abdelghani. Controllability of impulsive semilinear functional differential inclusions with finite delay in Fréchet spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 329-347. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a5/

[1] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman Research Notes in Mathematics Series, 246. Longman Scientific Technical, Harlow John Wiley Sons, Inc., New York, 1991.

[2] H. Amann, Linear and Quasilinear Parabolic Problems, Birkhäuser, Berlin, 1995.

[3] B. Amir and L. Maniar, Application de la théorie d'extrapolation pour la résolution des équations différentielles à retard homogènes, Extracta Math. 13 (1998), 95-105.

[4] B. Amir and L. Maniar, Composition of pseudo almost periodic functions and Cauchy problems with operator of nondense domain, Ann. Math. Blaise Pascal 6 (1999), 1-11.

[5] W. Arendt, C.J.K. Batty, M. Hieber and F. Neubrander, Vector-Valued Laplacian Transforms and Cauchy Problems, Monographs Math, Vol. 96, Birkhäuser Verlag, 2001.

[6] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Controllability results for impulsive functional differential inclusions, Rep. Math. Phys. 54 (2004), 211-227.

[7] M. Benchohra, L. Górniewicz, S.K. Ntouyas and A. Ouahab, Existence results for nondensely defined impulsive semilinear functional differential equations, Nonlinear Analysis and Applications, edited by R.P. Agarwal and D. O'Regan, Kluwer, 2003.

[8] M. Benchohra, J. Henderson and S.K. Ntouyas, Impulsive Differential Equations and Inclusions, Hindawi Publishing Corporation, Vol. 2, New York, 2006.

[9] M. Benchohra and A. Ouahab, Controllability results for functional semilinear differential inclusions in Fréchet spaces, Nonlinear Anal. 61 (2005), 405-423.

[10] G. Da Prato and E. Grisvard, On extrapolation spaces, Rend. Accad. Naz. Lincei. 72 (1982), 330-332.

[11] G. Da Prato and E. Sinestrari, Differential operators with non-dense domains, Ann. Scuola Norm. Sup. Pisa Sci. 14 (1987), 285-344.

[12] K.J. Engel and R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer-Verlag, New York, 2000.

[13] M. Frigon, Fixed Point Results for Multivalued Contractions on Gauge Spaces, Set Valued Mappings with Applications in Nonlinear Analysis, 175-181, Ser. Math. Anal. Appl. 4, Taylor Francis, London, 2002.

[14] E.P. Gatsori, L. Górniewicz and S.K. Ntouyas, Controllability results for nondensely defined evolution impulsive differential inclusions with nonlocal conditions, Panamer. Math. J. 15 (2) (2005), 1-27.

[15] G. Guhring, F. Rabiger and W. Ruess, Linearized stability for semilinear non-autonomous evolution equations to retarded differential equations, Differential Integral Equations 13 (2000), 503-527.

[16] J. Henderson and A. Ouahab, Existence results for nondensely defined semilinear functional differential inclusions in Fréchet spaces, Electron. J. Qual. Theory Differ. Equ. (2005), (11), 1-17.

[17] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer, Dordrecht, The Netherlands, 1991.

[18] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore, 1989.

[19] A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser Verlag, 1995.

[20] L. Maniar and A. Rhandi, Extrapolation and inhomogeneous retarded differential equations on infinite-dimensional spaces, Circ. Mat. Palermo 47 (2) (1998), 331-346.

[21] R. Nagel and E. Sinestrari, Inhomogeneous Volterra Integrodifferential Equations for Hille-Yosida operators, In Functional Analysis, edited by K.D. Bierstedt, A. Pietsch, W.M. Ruess and D. Voigt, 51-70, Marcel Dekker, 1998.

[22] J. Neerven, The Adjoint of a Semigroup of Linear Operators, Lecture Notes in Math. 1529, Springer-Verlag, New York, 1992.

[23] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

[24] M.D. Quinn and N. Carmichael, An approach to nonlinear control problem using fixed point methods, degree theory, pseudo-inverses, Numer. Funct. Anal. Optim. 7 (1984-85), 197-219.

[25] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore, 1995.