Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 315-327.

Voir la notice de l'article provenant de la source Library of Science

We prove an existence theorem for the equation x' = f(t,xₜ), x(Θ) = φ(Θ), where xₜ(Θ) = x(t+Θ), for -r ≤ Θ 0, t ∈ Iₐ, Iₐ = [0,a], a ∈ R₊ in a Banach space, using the Henstock-Kurzweil-Pettis integral and its properties. The requirements on the function f are not too restrictive: scalar measurability and weak sequential continuity with respect to the second variable. Moreover, we suppose that the function f satisfies some conditions expressed in terms of the measure of weak noncompactness.
Keywords: pseudo-solution, Pettis integral, Henstock-Kurzweil integral, Henstock-Kurzweil-Pettis integral, Cauchy problem
@article{DMDICO_2007_27_2_a4,
     author = {Sikorska-Nowak, A.},
     title = {Retarded functional differential equations in {Banach} spaces and {Henstock-Kurzweil-Pettis} integrals},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {315--327},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     zbl = {1149.34053},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a4/}
}
TY  - JOUR
AU  - Sikorska-Nowak, A.
TI  - Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2007
SP  - 315
EP  - 327
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a4/
LA  - en
ID  - DMDICO_2007_27_2_a4
ER  - 
%0 Journal Article
%A Sikorska-Nowak, A.
%T Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2007
%P 315-327
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a4/
%G en
%F DMDICO_2007_27_2_a4
Sikorska-Nowak, A. Retarded functional differential equations in Banach spaces and Henstock-Kurzweil-Pettis integrals. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 315-327. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a4/

[1] Z. Artstein, Topological dynamics of ordinary differential equations and Kurzweil equations, J. Differential Equations 23 (1977), 224-243.

[2] J.M. Ball, Weak continuity properties of mappings and semi-groups, Proc. Royal Soc. Edinbourgh Sect. A 72 (1979), 275-280.

[3] J. Banaś, Demicontinuity and weak sequential continuity of operators in the Lebesgue space, Proceedings of the 1th Polish Symposium on Nonlinear Analysis, Łódź (1997), 124-129.

[4] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., 60, Dekker, New York and Basel, 1980.

[5] F.S. DeBlasi, On a property of the unit sphere in a Banach space, Bull. Math. Soc. Sci. Math. R.S. Roumanie 21 (1977), 259-262.

[6] S.S. Cao, The Henstock integral for Banach valued functions, SEA Bull. Math. 16 (1992), 36-40.

[7] T.S. Chew, On Kurzweil generalized ordinary differential equations, J. Differential Equations 76 (1988), 286-293.

[8] T.S Chew and F. Flordeliza, On x' = f(t,x) and Henstock-Kurzweil integrals, Differential and Integral Equations 4 (1991), 861-868.

[9] T.S. Chew, W. van Brunt and G.C. Wake, On retarded functional differential equations and Henstock-Kurzweil integrals, Differential and Integral Equations 9 (1996), 569-580.

[10] T.S. Chew and T.L. Toh, On functional differential equation with unbounded delay and Henstock-Kurzweil integrals, New Zeland Journal of Mathematics 28 (1999), 111-123.

[11] M. Cichoń, Convergence theorems for the Henstock-Kurzweil-Pettis integral, Acta Math. Hungarica 92 (2001), 75-82.

[12] M. Cichoń, Weak solutions of differential equations in Banach spaces, Disc. Math. Differ. Incl. 15 (1995), 5-14.

[13] M. Cichoń, I. Kubiaczyk and A. Sikorska, The Henstock-Kurzweil-Pettis integrals and existence theorems for the Cauchy problem, Czech. Math. J. 54 (129) (2004), 279-289.

[14] M.C. Deflour and S.K. Mitter, Hereditary differential systems with constant delays, I General case, J. Differential Equations 9 (1972), 213-235.

[15] R.F.Geitz, Pettis integration, Proc. Amer. Math. Soc. 82 (1991), 81-86.

[16] R.A. Gordon, Riemann integration in Banach spaces, Rocky Mountain J. Math. 21 (1991), 923-949.

[17] R.A. Gordon, The Denjoy extension of the Bochner, Pettis and Dunford integrals, Studia Math. 92 (1989), 73-91.

[18] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron and Henstock, Amer. Math. Soc., Providence, R.I. 1994.

[19] R.A. Gordon, The McShane integral of Banach-valued functions, Illinois J. Math. 34 (1990), 557-567.

[20] J. Hale, Functional Differential Equations, Springer-Verlag, 1971.

[21] R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, Clarendon Press, Oxford, 1991.

[22] W.J. Knight, Solutions of differential equations in Banach spaces, Duke Math. J. 41 (1974), 437-442

[23] I. Kubiaczyk, On a fixed point theorem for weakly sequentially continuous mappings, Disc. Math. Differ. Incl. 15 (1995), 15-20.

[24] I. Kubiaczyk, A. Sikorska, Differential equations in Banach spaces and Henstock-Kurzweil integrals, Disc. Math. Differ. Incl. 19 (1999), 35-43.

[25] J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter, Czech. Math. J. 7 (1957), 642-659.

[26] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, Nonlinear Equations in Abstract Spaces, (V. Lakshmikantham, ed.), 1978, 378-404.

[27] P.Y. Lee, Lanzhou Lectures on Henstock Integration, Ser. Real Anal. 2, World Sci., Singapore, 1989.

[28] B.J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304.

[29] A. Sikorska-Nowak, Retarded functional differential equations in Banach spaces and Henstock-Kurzweil integrals, Demonstratio Math. 35 (2002), 49-60.