Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2007_27_2_a2, author = {Kowalska, A.}, title = {Continuous selections and approximations in \ensuremath{\alpha}-convex metric spaces}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {265--294}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2007}, zbl = {1146.54009}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a2/} }
TY - JOUR AU - Kowalska, A. TI - Continuous selections and approximations in α-convex metric spaces JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2007 SP - 265 EP - 294 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a2/ LA - en ID - DMDICO_2007_27_2_a2 ER -
%0 Journal Article %A Kowalska, A. %T Continuous selections and approximations in α-convex metric spaces %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2007 %P 265-294 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a2/ %G en %F DMDICO_2007_27_2_a2
Kowalska, A. Continuous selections and approximations in α-convex metric spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 265-294. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a2/
[1] H. Ben-El-Mechaiekh and W. Kryszewski, Equilibria of set-valued maps onnonconvex domains, Trans. Amer. Math. Soc. 349 (1997), 4159-4179.
[2] F.S. de Blasi, L. Górniewicz and G. Pianigiani, Fixed point index for multivaled mappngs in convex metric spaces, private communication.
[3] F.S. de Blasi and G. Pianigiani, Approximate selections in α-convex metric spaces and topological degree, Topol. Methods Nonlinear Anal. 24 (2) (2004), 347-375.
[4] F.S. de Blasi and G. Pianigiani, Continuous selections in α-convex metric spaces, Bull. Poll. Acad. Sci. Math. 52 (3) (2004), 303-317.
[5] F.S. de Blasi and G. Pianigiani, Pseudo-barycenters and approximations of multifunctions in metric spaces, submitted.
[6] K. Borsuk, Theory of retracts, Monografie Matematyczne 44, Warszawa, 1967.
[7] A. Cellina, A further result on the approximation of set-valued mapping, Atti Accad. Naz. Licei Rend. Cl. Sci. Fis. Mat. Natur. 48 (8) (1970), 412-416.
[8] G. Colombo and V. Goncharov, Continuous selections via geodesics, Topol. Methods Nonlinear Anal. 18 (1) (2001), 171-182.
[9] J. Dugundji, Topology, Allyn and Bacom, Boston, 1966.
[10] R. Engelking, General Topology, PWN, Warszawa, 1977.
[11] J.G. Hocking and G.S. Young, Topology, Addison-Wesley Publishing Company, Inc., Massachusetts, 1961.
[12] W. Kryszewski, Homotopy properties of set-valued mappings, The Nicholas Copernicus University, Toruń, 1997.
[13] W. Kryszewski, Graph-approximation of set-valued maps. A survey, Non. Anal. 2 (1998), 223-235.
[14] W. Kryszewski, Graph-approximation of set-valued maps on noncompact domains, Topology Appl. 83 (1988), 1-21.
[15] E. Michael, Continuous selections I, Ann. of Math. 63 (2) (1956), 361-382.
[16] D. Repovs and P.Semenov, On relative approximation theorems, Houston J. Math. 28 (2002), 497-509.
[17] J. Schwartz, Non-linear Functional Analysis, Gordon and Breach, New York, 1966.
[18] X. Zheng, Aproximate Selection Theorems and Their Applications, J. Math. Anal. Appl. 212 (1997), 88-97.