Continuous selections and approximations in α-convex metric spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 265-294.

Voir la notice de l'article provenant de la source Library of Science

In the paper, the notion of a generalized convexity was defined and studied from the view-point of the selection and approximation theory of set-valued maps. We study the simultaneous existence of continuous relative selections and graph-approximations of lower semicontinuous and upper semicontinuous set-valued maps with α-convex values having nonempty intersection.
Keywords: generalized convexity, selections, relative selections, graph-approximations
@article{DMDICO_2007_27_2_a2,
     author = {Kowalska, A.},
     title = {Continuous selections and approximations in \ensuremath{\alpha}-convex metric spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {265--294},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     zbl = {1146.54009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a2/}
}
TY  - JOUR
AU  - Kowalska, A.
TI  - Continuous selections and approximations in α-convex metric spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2007
SP  - 265
EP  - 294
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a2/
LA  - en
ID  - DMDICO_2007_27_2_a2
ER  - 
%0 Journal Article
%A Kowalska, A.
%T Continuous selections and approximations in α-convex metric spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2007
%P 265-294
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a2/
%G en
%F DMDICO_2007_27_2_a2
Kowalska, A. Continuous selections and approximations in α-convex metric spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 265-294. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a2/

[1] H. Ben-El-Mechaiekh and W. Kryszewski, Equilibria of set-valued maps onnonconvex domains, Trans. Amer. Math. Soc. 349 (1997), 4159-4179.

[2] F.S. de Blasi, L. Górniewicz and G. Pianigiani, Fixed point index for multivaled mappngs in convex metric spaces, private communication.

[3] F.S. de Blasi and G. Pianigiani, Approximate selections in α-convex metric spaces and topological degree, Topol. Methods Nonlinear Anal. 24 (2) (2004), 347-375.

[4] F.S. de Blasi and G. Pianigiani, Continuous selections in α-convex metric spaces, Bull. Poll. Acad. Sci. Math. 52 (3) (2004), 303-317.

[5] F.S. de Blasi and G. Pianigiani, Pseudo-barycenters and approximations of multifunctions in metric spaces, submitted.

[6] K. Borsuk, Theory of retracts, Monografie Matematyczne 44, Warszawa, 1967.

[7] A. Cellina, A further result on the approximation of set-valued mapping, Atti Accad. Naz. Licei Rend. Cl. Sci. Fis. Mat. Natur. 48 (8) (1970), 412-416.

[8] G. Colombo and V. Goncharov, Continuous selections via geodesics, Topol. Methods Nonlinear Anal. 18 (1) (2001), 171-182.

[9] J. Dugundji, Topology, Allyn and Bacom, Boston, 1966.

[10] R. Engelking, General Topology, PWN, Warszawa, 1977.

[11] J.G. Hocking and G.S. Young, Topology, Addison-Wesley Publishing Company, Inc., Massachusetts, 1961.

[12] W. Kryszewski, Homotopy properties of set-valued mappings, The Nicholas Copernicus University, Toruń, 1997.

[13] W. Kryszewski, Graph-approximation of set-valued maps. A survey, Non. Anal. 2 (1998), 223-235.

[14] W. Kryszewski, Graph-approximation of set-valued maps on noncompact domains, Topology Appl. 83 (1988), 1-21.

[15] E. Michael, Continuous selections I, Ann. of Math. 63 (2) (1956), 361-382.

[16] D. Repovs and P.Semenov, On relative approximation theorems, Houston J. Math. 28 (2002), 497-509.

[17] J. Schwartz, Non-linear Functional Analysis, Gordon and Breach, New York, 1966.

[18] X. Zheng, Aproximate Selection Theorems and Their Applications, J. Math. Anal. Appl. 212 (1997), 88-97.