On discontinuous quasi-variational inequalities
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 199-212.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we derive a general theorem concerning the quasi-variational inequality problem: find x̅ ∈ C and y̅ ∈ T(x̅) such that x̅ ∈ S(x̅) and
Keywords: variational inequality, quasi-variatioal inequality, Ricceri's conjecture, Karamardian condition, Hausdorff continuous multifunction, Kneser's minimax inequality
@article{DMDICO_2007_27_2_a0,
     author = {Chu, Liang-Ju and Lin, Ching-Yang},
     title = {On discontinuous quasi-variational inequalities},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {199--212},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2007},
     zbl = {1185.47072},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a0/}
}
TY  - JOUR
AU  - Chu, Liang-Ju
AU  - Lin, Ching-Yang
TI  - On discontinuous quasi-variational inequalities
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2007
SP  - 199
EP  - 212
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a0/
LA  - en
ID  - DMDICO_2007_27_2_a0
ER  - 
%0 Journal Article
%A Chu, Liang-Ju
%A Lin, Ching-Yang
%T On discontinuous quasi-variational inequalities
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2007
%P 199-212
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a0/
%G en
%F DMDICO_2007_27_2_a0
Chu, Liang-Ju; Lin, Ching-Yang. On discontinuous quasi-variational inequalities. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 199-212. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a0/

[1] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley Sons, New York, 1984.

[2] D. Chan and J.S. Pang, The generalized quasi-variational inequality problem, Math. Operations Research 7 (1982), 211-222.

[3] L.J. Chu and C.Y. Lin, Variational inequalities in noncompact nonconvex regions, Disc. Math. Differential Inclusions, Control and Optimization 23 (2003), 5-19.

[4] P. Cubiotti, Finite-dimensional quasi-variational inequalities associated with discontinuous functions, J. Optimization Theory and Applications 72 (1992), 577-582.

[5] P. Cubiotti, An existence theorem for generalized quasi-variational inequalities, Set-Valued Analysis 1 (1993), 81-87.

[6] P. Cubiotti, An application of quasivariational inequalities to linear control systems, J. Optim. Theory Appl. 89 (1) (1996), 101-113.

[7] P. Cubiotti, Generalized quasi-variational inequalities without continuities, J. Optim. Theory Appl. 92 (3) (1997), 477-495.

[8] P. Cubiotti, Generalized quasi-variational inequalities in infinite-dimensional normed spaces, J. Optim. Theory Appl. 92 (3) (1997), 457-475.

[9] E. Klein and A.C. Thompson, Theorem of Correspondences, Wiley, New York, 1984.

[10] H. Kneser, Sur un théoreme fondamantal de la théorie des jeux, Comptes Rendus de l'Academie des Sciences, Paris 234 (1952), 2418-2420.

[11] M.L. Lunsford, Generalized variational and quasivariational inequalities with discontinuous operators, J. Math. Anal. Appl. 214 (1997), 245-263.

[12] B. Ricceri, Basic existence theorem for generalized variational and quasi-variational inequalities, Variational Inequalities and Network Equilibrium Problems, Edited by F. Giannessi and A. Maugeri, Plenum Press, New York, 1995 (251-255).

[13] R. Saigal, Extension of the generalized complemetarity problem, Math. Operations Research 1 (3) (1976), 260-266.

[14] M.H. Shih and K.K. Tan, Generalized quasi-variational inequaloties in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), 333-343.

[15] J.C. Yao and J.S. Guo, Variational and generalized variational inequalities with discontinuous mappings, J. Math. Anal. Appl. 182 (1994), 371-392.