Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2007_27_2_a0, author = {Chu, Liang-Ju and Lin, Ching-Yang}, title = {On discontinuous quasi-variational inequalities}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {199--212}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2007}, zbl = {1185.47072}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a0/} }
TY - JOUR AU - Chu, Liang-Ju AU - Lin, Ching-Yang TI - On discontinuous quasi-variational inequalities JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2007 SP - 199 EP - 212 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a0/ LA - en ID - DMDICO_2007_27_2_a0 ER -
%0 Journal Article %A Chu, Liang-Ju %A Lin, Ching-Yang %T On discontinuous quasi-variational inequalities %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2007 %P 199-212 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a0/ %G en %F DMDICO_2007_27_2_a0
Chu, Liang-Ju; Lin, Ching-Yang. On discontinuous quasi-variational inequalities. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 27 (2007) no. 2, pp. 199-212. http://geodesic.mathdoc.fr/item/DMDICO_2007_27_2_a0/
[1] J.P. Aubin and I. Ekeland, Applied Nonlinear Analysis, John Wiley Sons, New York, 1984.
[2] D. Chan and J.S. Pang, The generalized quasi-variational inequality problem, Math. Operations Research 7 (1982), 211-222.
[3] L.J. Chu and C.Y. Lin, Variational inequalities in noncompact nonconvex regions, Disc. Math. Differential Inclusions, Control and Optimization 23 (2003), 5-19.
[4] P. Cubiotti, Finite-dimensional quasi-variational inequalities associated with discontinuous functions, J. Optimization Theory and Applications 72 (1992), 577-582.
[5] P. Cubiotti, An existence theorem for generalized quasi-variational inequalities, Set-Valued Analysis 1 (1993), 81-87.
[6] P. Cubiotti, An application of quasivariational inequalities to linear control systems, J. Optim. Theory Appl. 89 (1) (1996), 101-113.
[7] P. Cubiotti, Generalized quasi-variational inequalities without continuities, J. Optim. Theory Appl. 92 (3) (1997), 477-495.
[8] P. Cubiotti, Generalized quasi-variational inequalities in infinite-dimensional normed spaces, J. Optim. Theory Appl. 92 (3) (1997), 457-475.
[9] E. Klein and A.C. Thompson, Theorem of Correspondences, Wiley, New York, 1984.
[10] H. Kneser, Sur un théoreme fondamantal de la théorie des jeux, Comptes Rendus de l'Academie des Sciences, Paris 234 (1952), 2418-2420.
[11] M.L. Lunsford, Generalized variational and quasivariational inequalities with discontinuous operators, J. Math. Anal. Appl. 214 (1997), 245-263.
[12] B. Ricceri, Basic existence theorem for generalized variational and quasi-variational inequalities, Variational Inequalities and Network Equilibrium Problems, Edited by F. Giannessi and A. Maugeri, Plenum Press, New York, 1995 (251-255).
[13] R. Saigal, Extension of the generalized complemetarity problem, Math. Operations Research 1 (3) (1976), 260-266.
[14] M.H. Shih and K.K. Tan, Generalized quasi-variational inequaloties in locally convex topological vector spaces, J. Math. Anal. Appl. 108 (1985), 333-343.
[15] J.C. Yao and J.S. Guo, Variational and generalized variational inequalities with discontinuous mappings, J. Math. Anal. Appl. 182 (1994), 371-392.