Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2006_26_1_a7, author = {Tisdell, Christopher}, title = {Systems of differential inclusions in the absence of maximum principles and growth conditions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {129--141}, publisher = {mathdoc}, volume = {26}, number = {1}, year = {2006}, zbl = {1139.34008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a7/} }
TY - JOUR AU - Tisdell, Christopher TI - Systems of differential inclusions in the absence of maximum principles and growth conditions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2006 SP - 129 EP - 141 VL - 26 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a7/ LA - en ID - DMDICO_2006_26_1_a7 ER -
%0 Journal Article %A Tisdell, Christopher %T Systems of differential inclusions in the absence of maximum principles and growth conditions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2006 %P 129-141 %V 26 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a7/ %G en %F DMDICO_2006_26_1_a7
Tisdell, Christopher. Systems of differential inclusions in the absence of maximum principles and growth conditions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 129-141. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a7/
[1] J. Andres and L. Górniewicz, Topological fixed point principles for boundary value problems. Topological Fixed Point Theory and Its Applications, 1, Kluwer Academic Publishers, Dordrecht 2003.
[2] A. Arara, M. Benchohra, S.K. Ntouyas and A. Ouahab, Existence results for boundary value problems for fourth-order differential inclusions with nonconvex valued right hand side, Arch. Math. (Brno) 40 (3) (2004), 219-227.
[3] J.P. Aubin and A. Cellina, Differential inclusions. Set-valued maps and viability theory, Fundamental Principles of Mathematical Sciences, 264, Springer-Verlag, Berlin 1984.
[4] E.P. Avgerinos, N.S. Papageorgiou and N. Yannakakis, Periodic solutions for second order differential inclusions with nonconvex and unbounded multifunction, Acta Math. Hungar. 83 (4) (1999), 303-314.
[5] R. Bader, B.D. Gelḿan, M. Kamenskii and V. Obukhovskii, On the topological dimension of the solutions sets for some classes of operator and differential inclusions, Discuss. Math. Differ. Incl. Control Optim. 22 (1) (2002), 17-32.
[6] M. Benchora and S.K. Ntouyas, Multi point boundary value problems for second order differential inclusions, Mat. Vesnik 53 (1-2) (2001), 51-58.
[7] M. Benchohra and S.K. Ntouyas, On three and four point boundary value problems for second order differential inclusions, Math. Notes (Miskolc) 2 (2) (2001), 93-101.
[8] M. Benchohra and S.K. Ntouyas, Multi-point boundary value problems for lower semicontinuous differential inclusions, Math. Notes (Miskolc) 3 (2) (2002), 91-99.
[9] A. Boucherif and B. Chanane, Boundary value problems for second order differential inclusions, Int. J. Differ. Equ. Appl. 7 (2) (2003), 147-151.
[10] A. Boucherif and B. Chanane, Second order multivalued boundary value problems, Comm. Appl. Nonlinear Anal. 11 (1) (2004), 85-91.
[11] Y. Daido, M. Ikehata and G. Nakamura, Reconstruction of inclusions for the inverse boundary value problem with mixed type boundary condition, Appl. Anal. 83 (2) (2004), 109-124.
[12] B.C. Dhage, On boundary value problems of second order differential inclusions, Discuss. Math. Differ. Incl. Control Optim. 24 (2004), 73-96.
[13] T. Donchev and M. Quincampoix, A two point boundary value problem for a class of differential inclusions, J. Nonlinear Convex Anal. 5 (1) (2004), 59-69.
[14] L.H. Erbe and W. Krawcewicz, Boundary value problems for second order nonlinear differential inclusions. Qualitative theory of differential equations (Szeged, 1988), 163-171, Colloq. Math. Soc. Janos Bolyai, 53, North-Holland, Amsterdam 1990.
[15] L.H. Erbe and W. Krawcewicz, Boundary value problems for differential inclusions. Differential equations (Colorado Springs, CO, 1989), 115-135, Lecture Notes in Pure and Appl. Math., 127, Dekker, New York 1991.
[16] L.H. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y''∈ F(t,y,y'), Ann. Polon. Math. 54 (3) (1991), 195-226.
[17] L. Erbe, R. Ma and C.C. Tisdell, On two point boundary value problems for second order differential inclusions, Dynam. Systems Appl. 15 (1) (2006), 79-88.
[18] L. Erbe, C.C. Tisdell and P.J.Y. Wong, On Systems of boundary value problems for differential inclusions, Acta Math. Sinica (in press).
[19] M. Filippakis, L. Gasiński and N.S. Papageorgiou, Positive solutions for second order multivalued boundary value problems, Nonlinear analysis and applications: to V. Lakshmikantham on his 80th birthday, Vol. 1, 2, 531-547, Kluwer Acad. Publ., Dordrecht 2003.
[20] L. Gasiński and N.S. Papageorgiou, Strongly nonlinear multivalued boundary value problems, Nonlinear Anal. 52 (4) (2003), 1219-1238.
[21] L. Gasiński and N.S. Papageorgiou, Nonlinear second-order multivalued boundary value problems, Proc. Indian Acad. Sci. Math. Sci. 113 (3) (2003), 293-319.
[22] Y.E. Gliklikh and A.V. Obukhovskiĭ, On a two-point boundary value problem for second-order differential inclusions on Riemannian manifolds, Abstr. Appl. Anal. (2003), no. 10, 591-600.
[23] A.M. Gomaa, On the solution sets of three-point boundary value problems for nonconvex differential inclusions, J. Egyptian Math. Soc. 12 (2) (2004), 97-107.
[24] A. Granas and J. Dugundji, Fixed point theory, Springer Monographs in Mathematics, Springer-Verlag, New York 2003.
[25] N. Halidias and N.S. Papageorgiou, Existence and relaxation results for nonlinear second-order multivalued boundary value problems in $R^N$, J. Differential Equations 147 (1) (1998), 123-154.
[26] D.A. Kandilakis and N.S. Papageorgiou, Existence theorems for nonlinear boundary value problems for second order differential inclusions, J. Differential Equations 132 (1) (1996), 107-125.
[27] M. Kisielewicz, Differential inclusions and optimal control, Mathematics and its Applications (East European Series), 44. Kluwer Academic Publishers Group, Dordrecht; PWN - Polish Scientific Publishers, Warsaw 1991.
[28] T. Pruszko, Some applications of the topological degree theory to multivalued boundary value problems, Dissertationes Math. (Rozprawy Mat.) 229 (1984).
[29] S. Sędziwy, Fredholm alternative and boundary value problems, Proc. Amer. Math. Soc. 132 (6) (2004), 1779-1784.
[30] G.V. Smirnov, Introduction to the theory of differential inclusions, Graduate Studies in Mathematics, 41, American Mathematical Society, Providence, RI 2002.
[31] A.N. Vityuk, Solvability of a three-point boundary value problem for a second-order differential inclusion, (Russian) UkraŻn. Mat. Zh. 55 (1) (2003), 132-137; translation in Ukrainian Math. J. 55 (1) (2003), 164-170.