Selection theorem in L¹
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 123-127.

Voir la notice de l'article provenant de la source Library of Science

Let F be a multifunction from a metric space X into L¹, and B a subset of X. We give sufficient conditions for the existence of a measurable selector of F which is continuous at every point of B. Among other assumptions, we require the decomposability of F(x) for x ∈ B.
Keywords: multifunction, measurable selector, continuous selector, decomposable set
@article{DMDICO_2006_26_1_a6,
     author = {Nowak, Andrzej and Rom, Celina},
     title = {Selection theorem in {L{\textonesuperior}}},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {123--127},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a6/}
}
TY  - JOUR
AU  - Nowak, Andrzej
AU  - Rom, Celina
TI  - Selection theorem in L¹
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2006
SP  - 123
EP  - 127
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a6/
LA  - en
ID  - DMDICO_2006_26_1_a6
ER  - 
%0 Journal Article
%A Nowak, Andrzej
%A Rom, Celina
%T Selection theorem in L¹
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2006
%P 123-127
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a6/
%G en
%F DMDICO_2006_26_1_a6
Nowak, Andrzej; Rom, Celina. Selection theorem in L¹. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 123-127. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a6/

[1] S.M. Ageev and D. Repovs, On selection theorems with decomposable values, Topol. Methods Nonlinear Anal. 15 (2000), 385-399.

[2] A.V. Arutyunov, Special selectors of multivalued mappings (in Russian), Dokl. Akad. Nauk Ross. Akad. Nauk 377 (3) (2001), 298-300. English translation: Dokl. Math. 63 (2) (2001), 182-184.

[3] A. Bressan and G. Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), 69-86.

[4] A. Fryszkowski, Continuous selections for a class of non-convex multivalued maps, Studia Math. 76 (1983), 163-174.

[5] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182.

[6] C.J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72.

[7] S.J. Leese, Multifunctions of Souslin type, Bull. Austral. Math. Soc. 11 (1974), 395-411.

[8] A. Nowak and C. Rom, Decomposable hulls of multifunctions, Discuss. Math. Differ. Incl. Control Optim. 22 (2002), 233-241.

[9] Cz. Olech, Decomposability as a substitute for convexity, Multifunctions and Integrands: Stochastic Analysis, Approximation and Optimization, Proc. Conf. Catania, Italy, June 7-16, 1983 (G. Salinetti, ed.); Lecture Notes in Math., vol. 1091, Springer-Verlag, Berlin, 1984, pp. 193-205.

[10] A.A. Tolstonogov and D.A. Tolstonogov, Lₚ-continuous extreme selectors of multifunctions with decomposable values: Existence theorems, Set-Valued Anal. 4 (1996), 173-203.

[11] D.H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (5) (1977), 859-903.