A fibering method approach to a system of quasilinear equations with nonlinear boundary conditions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 113-121.

Voir la notice de l'article provenant de la source Library of Science

We provide an existence result for a system of quasilinear equations subject to nonlinear boundary conditions on a bounded domain by using the fibering method.
Keywords: quasilinear system, nonlinear boundary condition, fibering method, principal eigenvalue
@article{DMDICO_2006_26_1_a5,
     author = {Kandilakis, Dimitrios and Magiropoulos, Manolis},
     title = {A fibering method approach to a system of quasilinear equations with nonlinear boundary conditions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {113--121},
     publisher = {mathdoc},
     volume = {26},
     number = {1},
     year = {2006},
     zbl = {1132.35310},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a5/}
}
TY  - JOUR
AU  - Kandilakis, Dimitrios
AU  - Magiropoulos, Manolis
TI  - A fibering method approach to a system of quasilinear equations with nonlinear boundary conditions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2006
SP  - 113
EP  - 121
VL  - 26
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a5/
LA  - en
ID  - DMDICO_2006_26_1_a5
ER  - 
%0 Journal Article
%A Kandilakis, Dimitrios
%A Magiropoulos, Manolis
%T A fibering method approach to a system of quasilinear equations with nonlinear boundary conditions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2006
%P 113-121
%V 26
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a5/
%G en
%F DMDICO_2006_26_1_a5
Kandilakis, Dimitrios; Magiropoulos, Manolis. A fibering method approach to a system of quasilinear equations with nonlinear boundary conditions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 26 (2006) no. 1, pp. 113-121. http://geodesic.mathdoc.fr/item/DMDICO_2006_26_1_a5/

[1] I. Babuska and J. Osborn, Eigenvalue problems, in: 'Handbook of Numerical Analysis', vol. II, North-Holland, Amsterdam, 641-787 (1991).

[2] J. Fernandez Bonder and J. Rossi, A nonlinear eigenvalue problem with indefinite weights related to the Sobolev trace embedding, Publ. Mat. 46 (1) (2002), 221-235.

[3] Y. Bozhkov and E. Mitidieri, Existence of multiple solutions for quasilinear systems via fibering method, J. Diff. Eq. 190 (2003), 239-267.

[4] S.I. Pohozaev, On a constructive method in calculus of variations, Dokl. Akad. Nauk 298 (1988) 1330-1333 (in Russian) and 37 (1988), 274-277 (in English).

[5] S.I. Pohozaev, On fibering method for the solutions of nonlinear boundary value problems, Trudy Mat. Inst. Steklov 192 (1990), 146-163 (in Russian).

[6] J.L. Vázquez, A Strong Maximum Principle for some Quasilinear Elliptic Equations, Appl. Math. Optim. 12 (1984), 191-202.