Continuous selection theorems
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 159-163.

Voir la notice de l'article provenant de la source Library of Science

Continuous approximation selection theorems are given. Hence, in some special cases continuous versions of Fillipov's selection theorem follow.
Keywords: set-valued mappings, continuous selection, Fillipov's selection theorem,
@article{DMDICO_2005_25_1_a7,
     author = {Kisielewicz, Micha{\l}},
     title = {Continuous selection theorems},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {159--163},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     zbl = {1110.54013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a7/}
}
TY  - JOUR
AU  - Kisielewicz, Michał
TI  - Continuous selection theorems
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2005
SP  - 159
EP  - 163
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a7/
LA  - en
ID  - DMDICO_2005_25_1_a7
ER  - 
%0 Journal Article
%A Kisielewicz, Michał
%T Continuous selection theorems
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2005
%P 159-163
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a7/
%G en
%F DMDICO_2005_25_1_a7
Kisielewicz, Michał. Continuous selection theorems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 159-163. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a7/

[1] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ., New York 1991.

[2] E. Michael, Continuous selections, Annales Math. 63 (1956), 361-382.

[3] L. Rybiński, On Carathéodory type selections, Fund. Math. 125 (1985), 187-193.