Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2005_25_1_a6, author = {Ahmed, N.}, title = {Measure valued solutions for stochastic evolution equations on {Hilbert} space and their feedback control}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {129--157}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2005}, zbl = {1122.34037}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a6/} }
TY - JOUR AU - Ahmed, N. TI - Measure valued solutions for stochastic evolution equations on Hilbert space and their feedback control JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2005 SP - 129 EP - 157 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a6/ LA - en ID - DMDICO_2005_25_1_a6 ER -
%0 Journal Article %A Ahmed, N. %T Measure valued solutions for stochastic evolution equations on Hilbert space and their feedback control %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2005 %P 129-157 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a6/ %G en %F DMDICO_2005_25_1_a6
Ahmed, N. Measure valued solutions for stochastic evolution equations on Hilbert space and their feedback control. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 129-157. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a6/
[1] N.U. Ahmed, Measure Solutions for Semilinear Evolution Equations with Polynomial Growth and Their Optimal Controls, Discuss. Math. Differential Inclusions 17 (1997), 5-27.
[2] N.U. Ahmed, Measure Solutions for Semilinear Systems with Unbounded Nonlinearities, Nonlinear Analysis: Theory, Methods and Applications 35 (1999), 487-503.
[3] N.U. Ahmed, Relaxed Solutions for Stochastic Evolution Equations on Hilbert Space with Polynomial Nonlinearities, Publicationes Mathematicae, Debrecen 54 (1-2) (1999), 75-101.
[4] N.U. Ahmed, Measure Solutions for Evolution Equations with Discontinuous Vector Fields, Nonlinear Functional analysis and Applications (NFAA) 9 (3)(2004), 467-484.
[5] N.U. Ahmed, Measure Solutions for Impulsive Evolution Equations with Measurable Vector Fields, JMAA, (submitted).
[6] S. Cerrai, Elliptic and parabolic equations in Rⁿ with coefficients having polynomial growth, Preprints di Matematica, n.9, Scuola Normale Superiore, Pisa 1995.
[7] A. Chojnowska-Michalik, Stochastic Differential Equations in Hilbert Spaces, Probability Theory, Banach Center Publications, 5, PWN-Polish Scientific Publishers 5 (1979), 53-74.
[8] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Encyclopedia of Mathematics and its Applications 44 Cambridge University Press 1992.
[9] J. Diestel and J.J. Uhl, Jr., Vector Measures, Math. Surveys Monogr. 15 AMS, Providence, RI 1977.
[10] N. Dunford and J.T. Schwartz, Linear Operators, Part 1, Interscience Publishers, Inc., New York 1958.
[11] H.O. Fattorini, A Remark on Existence of solutions of Infinite Dimensional Non-compact Optimal Control Problems, SIAM J. Control and Optim. 35 (4) (1997), 1422-1433.