A viability result for nonconvex semilinear functional differential inclusions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 109-128.

Voir la notice de l'article provenant de la source Library of Science

We establish some sufficient conditions in order that a given locally closed subset of a separable Banach space be a viable domain for a semilinear functional differential inclusion, using a tangency condition involving a semigroup generated by a linear operator.
Keywords: viability, invariance, tangency condition, semilinear differential inclusions
@article{DMDICO_2005_25_1_a5,
     author = {Lupulescu, Vasile and Necula, Mihai},
     title = {A viability result for nonconvex semilinear functional differential inclusions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {109--128},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     zbl = {1119.34057},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a5/}
}
TY  - JOUR
AU  - Lupulescu, Vasile
AU  - Necula, Mihai
TI  - A viability result for nonconvex semilinear functional differential inclusions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2005
SP  - 109
EP  - 128
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a5/
LA  - en
ID  - DMDICO_2005_25_1_a5
ER  - 
%0 Journal Article
%A Lupulescu, Vasile
%A Necula, Mihai
%T A viability result for nonconvex semilinear functional differential inclusions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2005
%P 109-128
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a5/
%G en
%F DMDICO_2005_25_1_a5
Lupulescu, Vasile; Necula, Mihai. A viability result for nonconvex semilinear functional differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a5/

[1] J.P. Aubin, Viability Theory. Systems Control: Foundations Applications, Birkhäuser Boston, Inc., Boston, MA 1991.

[2] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.

[3] H. Brézis and F.E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (3) (1976), 355-364.

[4] C. Castaing and M.D.P. Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Portugal. Math. 54 (4) (1997), 485-507.

[5] O. Cârja and M.D.P. Monteiro Marques, Viability for nonautonomous semilinear differential equations, J. Differential Equations 166 (2) (2000), 328-346.

[6] O. Cârja and C. Ursescu, The characteristics method for a first order partial differential equation, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 39 (4) (1993), 367-396.

[7] O. Cârja and I.I. Vrabie, Some new viability results for semilinear differential inclusions, NoDEA Nonlinear Differential Equations Appl. 4 (3) (1997), 401-424.

[8] K. Deimling, Multivalued differential equations, De Gruyter Series in Nonlinear Analysis and Applications, 1. Walter de Gruyter Co., Berlin 1992.

[9] W.E. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Differential Equations 29 (1) (1978), 1-14.

[10] A. Fryszkowski, Existence of solutions of functional-differential inclusion in nonconvex case, Ann. Polon. Math. 45 (2) (1985), 121-124.

[11] A. Gavioli and L. Malaguti, Viable solutions of differential inclusions with memory in Banach spaces, Portugal. Math. 57 (2) (2000), 203-217.

[12] L. Górniewicz, Topological fixed point theory of multivalued mappings, Mathematics and its Applications, 495. Kluwer Academic Publishers, Dordrecht 1999.

[13] G. Haddad, Monotone trajectories of differential inclusions and functional-differential inclusions with memory, Israel J. Math. 39 (1-2) (1981), 83-100.

[14] G. Haddad, Monotone viable trajectories for functional-differential inclusions, J. Differential Equations 42 (1) (1981), 1-24.

[15] J.K. Hale and S.M. Verduyn Lunel, Introduction to functional-differential equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York 1993.

[16] F. Iacob and N.H. Pavel, Invariant sets for a class of perturbed differential equations of retarded type, Israel J. Math. 28 (3) (1977), 254-264.

[17] M. Kisielewicz, Differential inclusions and optimal control, Mathematics and its Applications (East European Series), 44, Kluwer Academic Publishers Group, Dordrecht; PWN-Polish Scientific Publishers, Warsaw 1991.

[18] V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford-New York 1981.

[19] V. Lakshmikantham, S. Leela and V. Moauro, Existence and uniqueness of solutions of delay differential equations on a closed subset of a Banach space, Nonlinear Anal. 2 (3) (1978), 311-327.

[20] S. Leela and V. Moauro, Existence of solutions in a closed set for delay differential equations in Banach spaces, Nonlinear Anal. 2 (1) (1978), 47-58.

[21] V. Lupulescu and M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Funct. Anal. Appl. 9 (3) (2004), 495-512.

[22] E. Mitidieri and I.I. Vrabie, A class of strongly nonlinear functional differential equations, Universita degli Studi di Trieste, Instituto di Matematica, Quaderni Matematici II Serie 122 (1986), 1-19.

[23] E. Mitidieri and I.I. Vrabie, Existence for nonlinear functional differential equations, Hiroshima Math. J. 17 (3) (1987), 627-649.

[24] N.H. Pavel, Differential equations, flow invariance and applications, Research Notes in Mathematics, 113, Pitman (Advanced Publishing Program), Boston, MA 1984.

[25] A. Syam, Contribution Aux Inclusions Différentielles, Doctoral thesis, Université Montpellier II, 1993.

[26] A.A. Tolstonogov and I.A. Finogenko, On functional differential inclusions in Banach space with a nonconvex right-hand side, Soviet. Math. Dokl. 22 (1980), 320-324.

[27] I.I. Vrabie, C₀-semigroups and applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam 2003.

[28] G.F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1-12.

[29] Q.J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (2) (1991), 213-237.