Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2005_25_1_a5, author = {Lupulescu, Vasile and Necula, Mihai}, title = {A viability result for nonconvex semilinear functional differential inclusions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {109--128}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2005}, zbl = {1119.34057}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a5/} }
TY - JOUR AU - Lupulescu, Vasile AU - Necula, Mihai TI - A viability result for nonconvex semilinear functional differential inclusions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2005 SP - 109 EP - 128 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a5/ LA - en ID - DMDICO_2005_25_1_a5 ER -
%0 Journal Article %A Lupulescu, Vasile %A Necula, Mihai %T A viability result for nonconvex semilinear functional differential inclusions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2005 %P 109-128 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a5/ %G en %F DMDICO_2005_25_1_a5
Lupulescu, Vasile; Necula, Mihai. A viability result for nonconvex semilinear functional differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 109-128. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a5/
[1] J.P. Aubin, Viability Theory. Systems Control: Foundations Applications, Birkhäuser Boston, Inc., Boston, MA 1991.
[2] R.J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1-12.
[3] H. Brézis and F.E. Browder, A general principle on ordered sets in nonlinear functional analysis, Advances in Math. 21 (3) (1976), 355-364.
[4] C. Castaing and M.D.P. Monteiro Marques, Topological properties of solution sets for sweeping processes with delay, Portugal. Math. 54 (4) (1997), 485-507.
[5] O. Cârja and M.D.P. Monteiro Marques, Viability for nonautonomous semilinear differential equations, J. Differential Equations 166 (2) (2000), 328-346.
[6] O. Cârja and C. Ursescu, The characteristics method for a first order partial differential equation, An. Stiint. Univ. Al. I. Cuza Iasi Sect. I a Mat. 39 (4) (1993), 367-396.
[7] O. Cârja and I.I. Vrabie, Some new viability results for semilinear differential inclusions, NoDEA Nonlinear Differential Equations Appl. 4 (3) (1997), 401-424.
[8] K. Deimling, Multivalued differential equations, De Gruyter Series in Nonlinear Analysis and Applications, 1. Walter de Gruyter Co., Berlin 1992.
[9] W.E. Fitzgibbon, Semilinear functional differential equations in Banach space, J. Differential Equations 29 (1) (1978), 1-14.
[10] A. Fryszkowski, Existence of solutions of functional-differential inclusion in nonconvex case, Ann. Polon. Math. 45 (2) (1985), 121-124.
[11] A. Gavioli and L. Malaguti, Viable solutions of differential inclusions with memory in Banach spaces, Portugal. Math. 57 (2) (2000), 203-217.
[12] L. Górniewicz, Topological fixed point theory of multivalued mappings, Mathematics and its Applications, 495. Kluwer Academic Publishers, Dordrecht 1999.
[13] G. Haddad, Monotone trajectories of differential inclusions and functional-differential inclusions with memory, Israel J. Math. 39 (1-2) (1981), 83-100.
[14] G. Haddad, Monotone viable trajectories for functional-differential inclusions, J. Differential Equations 42 (1) (1981), 1-24.
[15] J.K. Hale and S.M. Verduyn Lunel, Introduction to functional-differential equations, Applied Mathematical Sciences, 99. Springer-Verlag, New York 1993.
[16] F. Iacob and N.H. Pavel, Invariant sets for a class of perturbed differential equations of retarded type, Israel J. Math. 28 (3) (1977), 254-264.
[17] M. Kisielewicz, Differential inclusions and optimal control, Mathematics and its Applications (East European Series), 44, Kluwer Academic Publishers Group, Dordrecht; PWN-Polish Scientific Publishers, Warsaw 1991.
[18] V. Lakshmikantham and S. Leela, Nonlinear differential equations in abstract spaces, International Series in Nonlinear Mathematics: Theory, Methods and Applications, 2, Pergamon Press, Oxford-New York 1981.
[19] V. Lakshmikantham, S. Leela and V. Moauro, Existence and uniqueness of solutions of delay differential equations on a closed subset of a Banach space, Nonlinear Anal. 2 (3) (1978), 311-327.
[20] S. Leela and V. Moauro, Existence of solutions in a closed set for delay differential equations in Banach spaces, Nonlinear Anal. 2 (1) (1978), 47-58.
[21] V. Lupulescu and M. Necula, Viability and local invariance for non-convex semilinear differential inclusions, Nonlinear Funct. Anal. Appl. 9 (3) (2004), 495-512.
[22] E. Mitidieri and I.I. Vrabie, A class of strongly nonlinear functional differential equations, Universita degli Studi di Trieste, Instituto di Matematica, Quaderni Matematici II Serie 122 (1986), 1-19.
[23] E. Mitidieri and I.I. Vrabie, Existence for nonlinear functional differential equations, Hiroshima Math. J. 17 (3) (1987), 627-649.
[24] N.H. Pavel, Differential equations, flow invariance and applications, Research Notes in Mathematics, 113, Pitman (Advanced Publishing Program), Boston, MA 1984.
[25] A. Syam, Contribution Aux Inclusions Différentielles, Doctoral thesis, Université Montpellier II, 1993.
[26] A.A. Tolstonogov and I.A. Finogenko, On functional differential inclusions in Banach space with a nonconvex right-hand side, Soviet. Math. Dokl. 22 (1980), 320-324.
[27] I.I. Vrabie, C₀-semigroups and applications, North-Holland Mathematics Studies, 191, North-Holland Publishing Co., Amsterdam 2003.
[28] G.F. Webb, Autonomous nonlinear functional differential equations and nonlinear semigroups, J. Math. Anal. Appl. 46 (1974), 1-12.
[29] Q.J. Zhu, On the solution set of differential inclusions in Banach space, J. Differential Equations 93 (2) (1991), 213-237.