Second-order necessary conditions for discrete inclusions with end point constraints
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 47-58.

Voir la notice de l'article provenant de la source Library of Science

We study an optimization problem given by a discrete inclusion with end point constraints. An approach concerning second-order optimality conditions is proposed.
Keywords: tangent cone, discrete inclusion, necessary optimality conditions
@article{DMDICO_2005_25_1_a3,
     author = {Cernea, Aurelian},
     title = {Second-order necessary conditions for discrete inclusions with end point constraints},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {47--58},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     zbl = {1112.49022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a3/}
}
TY  - JOUR
AU  - Cernea, Aurelian
TI  - Second-order necessary conditions for discrete inclusions with end point constraints
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2005
SP  - 47
EP  - 58
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a3/
LA  - en
ID  - DMDICO_2005_25_1_a3
ER  - 
%0 Journal Article
%A Cernea, Aurelian
%T Second-order necessary conditions for discrete inclusions with end point constraints
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2005
%P 47-58
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a3/
%G en
%F DMDICO_2005_25_1_a3
Cernea, Aurelian. Second-order necessary conditions for discrete inclusions with end point constraints. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a3/

[1] J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Basel 1990.

[2] A. Ben-Tal and J. Zowe, A unified theory of first and second order conditions for extremum problems in topological vector spaces, Math. Programming Study 19 (1982), 39-76.

[3] A. Cernea, On some second-order necessary conditions for differential inclusion problems, Lecture Notes Nonlin. Anal. 2 (1998), 113-121.

[4] A. Cernea, Some second-order necessary conditions for nonconvex hyperbolic differential inclusion problems, J. Math. Anal. Appl. 253 (2001), 616-639.

[5] A. Cernea, Derived cones to reachable sets of discrete inclusions, submitted.

[6] A. Cernea, On the maximum principle for discrete inclusions with end point constraints, Math. Reports, to appear.

[7] H.D. Tuan and Y. Ishizuka, On controllability and maximum principle for discrete inclusions, Optimization 34 (1995), 293-316.

[8] H. Zheng, Second-order necessary conditions for differential inclusion problems, Appl. Math. Opt. 30 (1994), 1-14.