Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2005_25_1_a3, author = {Cernea, Aurelian}, title = {Second-order necessary conditions for discrete inclusions with end point constraints}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {47--58}, publisher = {mathdoc}, volume = {25}, number = {1}, year = {2005}, zbl = {1112.49022}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a3/} }
TY - JOUR AU - Cernea, Aurelian TI - Second-order necessary conditions for discrete inclusions with end point constraints JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2005 SP - 47 EP - 58 VL - 25 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a3/ LA - en ID - DMDICO_2005_25_1_a3 ER -
%0 Journal Article %A Cernea, Aurelian %T Second-order necessary conditions for discrete inclusions with end point constraints %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2005 %P 47-58 %V 25 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a3/ %G en %F DMDICO_2005_25_1_a3
Cernea, Aurelian. Second-order necessary conditions for discrete inclusions with end point constraints. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 47-58. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a3/
[1] J.P. Aubin and H. Frankowska, Set-valued Analysis, Birkhäuser, Basel 1990.
[2] A. Ben-Tal and J. Zowe, A unified theory of first and second order conditions for extremum problems in topological vector spaces, Math. Programming Study 19 (1982), 39-76.
[3] A. Cernea, On some second-order necessary conditions for differential inclusion problems, Lecture Notes Nonlin. Anal. 2 (1998), 113-121.
[4] A. Cernea, Some second-order necessary conditions for nonconvex hyperbolic differential inclusion problems, J. Math. Anal. Appl. 253 (2001), 616-639.
[5] A. Cernea, Derived cones to reachable sets of discrete inclusions, submitted.
[6] A. Cernea, On the maximum principle for discrete inclusions with end point constraints, Math. Reports, to appear.
[7] H.D. Tuan and Y. Ishizuka, On controllability and maximum principle for discrete inclusions, Optimization 34 (1995), 293-316.
[8] H. Zheng, Second-order necessary conditions for differential inclusion problems, Appl. Math. Opt. 30 (1994), 1-14.