On a linear functional equation with a mean-type mapping having no fixed points
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 27-46
Cet article a éte moissonné depuis la source Library of Science
Our aim is to study continuous solutions φ of the classical linear iterative equation
Keywords:
linear functional equation, iteration, mean, continuous solution, solution depending on an arbitrary function
@article{DMDICO_2005_25_1_a2,
author = {Sajbura, Katarzyna},
title = {On a linear functional equation with a mean-type mapping having no fixed points},
journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
pages = {27--46},
year = {2005},
volume = {25},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a2/}
}
TY - JOUR AU - Sajbura, Katarzyna TI - On a linear functional equation with a mean-type mapping having no fixed points JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2005 SP - 27 EP - 46 VL - 25 IS - 1 UR - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a2/ LA - en ID - DMDICO_2005_25_1_a2 ER -
%0 Journal Article %A Sajbura, Katarzyna %T On a linear functional equation with a mean-type mapping having no fixed points %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2005 %P 27-46 %V 25 %N 1 %U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a2/ %G en %F DMDICO_2005_25_1_a2
Sajbura, Katarzyna. On a linear functional equation with a mean-type mapping having no fixed points. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 27-46. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a2/
[1] M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warszawa 1968.
[2] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107.
[3] J. Matkowski, Iterations of mean-type mappings and invariant means, Ann. Math. Sil. 13 (1999), 211-226.
[4] K. Sajbura, Level sets of continuous functions increasing with respect to each variable, Discuss. Math. DICO 25 (2005), 19-26.