On a linear functional equation with a mean-type mapping having no fixed points
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 27-46.

Voir la notice de l'article provenant de la source Library of Science

Our aim is to study continuous solutions φ of the classical linear iterative equation
Keywords: linear functional equation, iteration, mean, continuous solution, solution depending on an arbitrary function
@article{DMDICO_2005_25_1_a2,
     author = {Sajbura, Katarzyna},
     title = {On a linear functional equation with a mean-type mapping having no fixed points},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {27--46},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     zbl = {1111.39019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a2/}
}
TY  - JOUR
AU  - Sajbura, Katarzyna
TI  - On a linear functional equation with a mean-type mapping having no fixed points
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2005
SP  - 27
EP  - 46
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a2/
LA  - en
ID  - DMDICO_2005_25_1_a2
ER  - 
%0 Journal Article
%A Sajbura, Katarzyna
%T On a linear functional equation with a mean-type mapping having no fixed points
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2005
%P 27-46
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a2/
%G en
%F DMDICO_2005_25_1_a2
Sajbura, Katarzyna. On a linear functional equation with a mean-type mapping having no fixed points. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 27-46. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a2/

[1] M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warszawa 1968.

[2] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999), 87-107.

[3] J. Matkowski, Iterations of mean-type mappings and invariant means, Ann. Math. Sil. 13 (1999), 211-226.

[4] K. Sajbura, Level sets of continuous functions increasing with respect to each variable, Discuss. Math. DICO 25 (2005), 19-26.