Level sets of continuous functions increasing with respect to each variable
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 19-26.

Voir la notice de l'article provenant de la source Library of Science

We are going to prove that level sets of continuous functions increasing with respect to each variable are arcwise connected (Theorem 3) and characterize those of them which are arcs (Theorem 2). In [3], we will apply the second result to the classical linear functional equation
Keywords: level set, continuous function, function increasing with respect to each variable, arcwise connectedness
@article{DMDICO_2005_25_1_a1,
     author = {Sajbura, Katarzyna},
     title = {Level sets of continuous functions increasing with respect to each variable},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {19--26},
     publisher = {mathdoc},
     volume = {25},
     number = {1},
     year = {2005},
     zbl = {1170.26302},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a1/}
}
TY  - JOUR
AU  - Sajbura, Katarzyna
TI  - Level sets of continuous functions increasing with respect to each variable
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2005
SP  - 19
EP  - 26
VL  - 25
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a1/
LA  - en
ID  - DMDICO_2005_25_1_a1
ER  - 
%0 Journal Article
%A Sajbura, Katarzyna
%T Level sets of continuous functions increasing with respect to each variable
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2005
%P 19-26
%V 25
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a1/
%G en
%F DMDICO_2005_25_1_a1
Sajbura, Katarzyna. Level sets of continuous functions increasing with respect to each variable. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 25 (2005) no. 1, pp. 19-26. http://geodesic.mathdoc.fr/item/DMDICO_2005_25_1_a1/

[1] M. Kuczma, Functional equations in a single variable, Monografie Mat. 46, Polish Scientific Publishers, Warszawa 1968.

[2] M. Kuczma, B. Choczewski and R. Ger, Iterative functional equations, Encyclopedia of mathematics and its applications 32, Cambridge University Press, Cambridge, 1990.

[3] K. Sajbura, On a linear functional equation with a mean-type mapping having no fixed points, Discuss. Math. DICO 25 (2005), 27-46.