On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 41-48.

Voir la notice de l'article provenant de la source Library of Science

We investigate velocity hodograph inclusions for the case of right-hand sides satisfying upper Carathéodory conditions. As an application we obtain an existence theorem for a boundary value problem for second-order differential inclusions on complete Riemannian manifolds with Carathéodory right-hand sides.
Keywords: differential inclusions, Carathéodory conditions, velocity hodograph, Riemannian manifold, two-point bounadry value problem
@article{DMDICO_2004_24_1_a3,
     author = {Gliklikh, Yuri and Obukhovski, Andrei},
     title = {On differential inclusions of velocity hodograph type with {Carath\'eodory} conditions on {Riemannian} manifolds},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {41--48},
     publisher = {mathdoc},
     volume = {24},
     number = {1},
     year = {2004},
     zbl = {1077.58004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a3/}
}
TY  - JOUR
AU  - Gliklikh, Yuri
AU  - Obukhovski, Andrei
TI  - On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2004
SP  - 41
EP  - 48
VL  - 24
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a3/
LA  - en
ID  - DMDICO_2004_24_1_a3
ER  - 
%0 Journal Article
%A Gliklikh, Yuri
%A Obukhovski, Andrei
%T On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2004
%P 41-48
%V 24
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a3/
%G en
%F DMDICO_2004_24_1_a3
Gliklikh, Yuri; Obukhovski, Andrei. On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a3/

[1] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, New York, Academic Press 1964, p. 335.

[2] Yu.G. Borisovich, B.D. Gel'man, A.D. Myshkis and V.V. Obukhovski, Introduction to the theory of multivalued maps, Voronezh, Voronezh University Press, 1986, p. 104 (Russian).

[3] B.D. Gel'man and Yu.E. Gliklikh, Two-point boundary-value problem in geometric mechanics with discontinuous forces, Prikladnaya Matematika i Mekhanika 44 (3) (1980), 565-569 (Russian).

[4] Yu.E. Gliklikh, On a certain generalization of the Hopf-Rinow theorem on geodesics, Russian Math. Surveys 29 (6) (1974), 161-162.

[5] Yu.E. Gliklikh, Global Analysis in Mathematical Physics, Geometric and Stochastic Methods, New York, Springer-Verlag 1997, p. xv+213.

[6] M. Kamenski, V. Obukhovski and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Berlin-New York, Walter de Gruyter 2001, p. 231.

[7] M. Kisielewicz, Some remarks on boundary value problem for differential inclusions, Discuss. Math. Differential Inclusions 17 (1997), 43-50.