Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2004_24_1_a3, author = {Gliklikh, Yuri and Obukhovski, Andrei}, title = {On differential inclusions of velocity hodograph type with {Carath\'eodory} conditions on {Riemannian} manifolds}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {41--48}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, zbl = {1077.58004}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a3/} }
TY - JOUR AU - Gliklikh, Yuri AU - Obukhovski, Andrei TI - On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2004 SP - 41 EP - 48 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a3/ LA - en ID - DMDICO_2004_24_1_a3 ER -
%0 Journal Article %A Gliklikh, Yuri %A Obukhovski, Andrei %T On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2004 %P 41-48 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a3/ %G en %F DMDICO_2004_24_1_a3
Gliklikh, Yuri; Obukhovski, Andrei. On differential inclusions of velocity hodograph type with Carathéodory conditions on Riemannian manifolds. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 41-48. http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a3/
[1] R.L. Bishop and R.J. Crittenden, Geometry of Manifolds, New York, Academic Press 1964, p. 335.
[2] Yu.G. Borisovich, B.D. Gel'man, A.D. Myshkis and V.V. Obukhovski, Introduction to the theory of multivalued maps, Voronezh, Voronezh University Press, 1986, p. 104 (Russian).
[3] B.D. Gel'man and Yu.E. Gliklikh, Two-point boundary-value problem in geometric mechanics with discontinuous forces, Prikladnaya Matematika i Mekhanika 44 (3) (1980), 565-569 (Russian).
[4] Yu.E. Gliklikh, On a certain generalization of the Hopf-Rinow theorem on geodesics, Russian Math. Surveys 29 (6) (1974), 161-162.
[5] Yu.E. Gliklikh, Global Analysis in Mathematical Physics, Geometric and Stochastic Methods, New York, Springer-Verlag 1997, p. xv+213.
[6] M. Kamenski, V. Obukhovski and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces, Berlin-New York, Walter de Gruyter 2001, p. 231.
[7] M. Kisielewicz, Some remarks on boundary value problem for differential inclusions, Discuss. Math. Differential Inclusions 17 (1997), 43-50.