Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2004_24_1_a2, author = {Kandilakis, Dimitrios}, title = {On {Neumann} boundary value problems for elliptic equations}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {31--40}, publisher = {mathdoc}, volume = {24}, number = {1}, year = {2004}, zbl = {1073.35071}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a2/} }
TY - JOUR AU - Kandilakis, Dimitrios TI - On Neumann boundary value problems for elliptic equations JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2004 SP - 31 EP - 40 VL - 24 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a2/ LA - en ID - DMDICO_2004_24_1_a2 ER -
%0 Journal Article %A Kandilakis, Dimitrios %T On Neumann boundary value problems for elliptic equations %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2004 %P 31-40 %V 24 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a2/ %G en %F DMDICO_2004_24_1_a2
Kandilakis, Dimitrios. On Neumann boundary value problems for elliptic equations. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 24 (2004) no. 1, pp. 31-40. http://geodesic.mathdoc.fr/item/DMDICO_2004_24_1_a2/
[1] D. Arcoya and L. Orsina, Landesman-Laser conditions and quasilinear elliptic equations, Nonlin. Anal. TMA 28 (1997), 1623-1632.
[2] J. Bouchala and P. Drabek, Strong resonance for some quasilinear elliptic equations, J. Math. Anal. Appl. 245 (2000), 7-19.
[3] P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, NoDEA 7 (2000), 187-199.
[4] F. Cîrstea, D. Motreanu and V. Radulescu, Weak solutions of quasilinear problems with nonlinear boundary condition, Nonlin. Anal. 43 (2001), 623-636.
[5] P. Drabek, A. Kufner and F. Nicolosi, Quasilinear Elliptic Equations with Degenerations and Singulaties, W. De Gruyter 1997.
[6] W. Li and H. Zhen, The applications of sums of ranges of accretive operators to nonlinear equations involving the p-Laplacian operator, Nonlin. Anal. TMA 24 (2) (1995), 185-193.
[7] P.H. Rabinowitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Amer. Math. Soc. Prividence, 1976.