Multivalued linear operators and differential inclusions in Banach spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 53-74.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study multivalued linear operators (MLO's) and their resolvents in non reflexive Banach spaces, introducing a new condition of a minimal growth at infinity, more general than the Hille-Yosida condition. Then we describe the generalized semigroups induced by MLO's. We present a criterion for an MLO to be a generator of a generalized semigroup in an arbitrary Banach space. Finally, we obtain some existence results for differential inclusions with MLO's and various types of multivalued nonlinearities. As a consequence, we give theorems on the existence of local, global and bounded solutions of the Cauchy problem for degenerate differential inclusions.
Keywords: multivalued linear operator, generalized semigroup, minimal growth at infinity, Hille-Yosida condition, degenerate differential inclusion, Cauchy problem, bounded solution
@article{DMDICO_2003_23_1_a4,
     author = {Baskakov, Anatolii and Obukhovskii, Valeri and Zecca, Pietro},
     title = {Multivalued linear operators and differential inclusions in {Banach} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {53--74},
     publisher = {mathdoc},
     volume = {23},
     number = {1},
     year = {2003},
     zbl = {1059.34036},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a4/}
}
TY  - JOUR
AU  - Baskakov, Anatolii
AU  - Obukhovskii, Valeri
AU  - Zecca, Pietro
TI  - Multivalued linear operators and differential inclusions in Banach spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2003
SP  - 53
EP  - 74
VL  - 23
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a4/
LA  - en
ID  - DMDICO_2003_23_1_a4
ER  - 
%0 Journal Article
%A Baskakov, Anatolii
%A Obukhovskii, Valeri
%A Zecca, Pietro
%T Multivalued linear operators and differential inclusions in Banach spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2003
%P 53-74
%V 23
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a4/
%G en
%F DMDICO_2003_23_1_a4
Baskakov, Anatolii; Obukhovskii, Valeri; Zecca, Pietro. Multivalued linear operators and differential inclusions in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 53-74. http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a4/

[1] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Topological methods in the theory of fixed points of multivalued mappings, (in Russian) Uspekhi Mat. Nauk 35 (1980), no.1(211), 59-126, English transl. in Russian Math. Surveys 35 (1980), 65-143.

[2] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Multivalued mappings, (Russian) Mathematical Analysis 19 pp.127-230, 232, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Techn. Informatsii, Moscow, 1982. English transl. in J. Soviet Math. 24 (1984), 719-791.

[3] R. Cross, Multivalued Linear Operators. Monographs and Textbooks in Pure and Applied Mathematics, 213. Marcel Dekker, Inc., New York, 1998.

[4] A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl. 163 (4) (1993), 353-384.

[5] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 215. Marcel Dekker, Inc., New York, 1999.

[6] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter Co., Berlin - New York, 2001.

[7] I.V. Mel'nikova and M.A. Al'shanskii, Well-posedness of the degenerate Cauchy problem in a Banach space, (in Russian) Dokl. Akad. Nauk 336 (1994), no.1, 17-20; English translation in Russian Acad. Sci. Dokl. Math. 49 (3) (1994), 449-453.

[8] I.V. Mel'nikova and A. Filinkov, Abstract Cauchy Problems: Three Approaches. Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 120. Chapman Hall/CRC, Boca Raton, FL, 2001.

[9] V.V. Obukhovskii, On some fixed point principles for multivalued condensing operators, (in Russian) Trudy Mat. Fac. Voronezh Univ. 4 (1971), 70-79.

[10] V. Obukhovskii and P. Zecca, On boundary value problems for degenerate differential inclusions in Banach spaces, Abstr. Appl. Anal. 13 (2003), 769-784.

[11] G.A. Sviridyuk, On the general theory of operator semigroups, (in Russian) Uspekhi Mat. Nauk 49 (1994), no. 4(208), 47-74; English translation in Russian Math. Surveys 49 (4) (1994), 45-74.

[12] G.A. Sviridyuk and V.E. Fedorov, Semigroups of operators with kernels, (in Russian) Vestnik Chelyabinsk Univ. Ser. 3 Mat. Mekh. 1 (6) (2002), 42-70.

[13] K. Yosida, Functional Analysis. Die Grundlehren der Mathematischen Wissenschaften, 123, Springer-Verlag, Berlin, 1965.

[14] A. Yagi, Generation theorem of semigroup for multivalued linear operators, Osaka J. Math. 28 (2) (1991), 385-410.