Multivalued linear operators and differential inclusions in Banach spaces
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 53-74 Cet article a éte moissonné depuis la source Library of Science

Voir la notice de l'article

In this paper, we study multivalued linear operators (MLO's) and their resolvents in non reflexive Banach spaces, introducing a new condition of a minimal growth at infinity, more general than the Hille-Yosida condition. Then we describe the generalized semigroups induced by MLO's. We present a criterion for an MLO to be a generator of a generalized semigroup in an arbitrary Banach space. Finally, we obtain some existence results for differential inclusions with MLO's and various types of multivalued nonlinearities. As a consequence, we give theorems on the existence of local, global and bounded solutions of the Cauchy problem for degenerate differential inclusions.
Keywords: multivalued linear operator, generalized semigroup, minimal growth at infinity, Hille-Yosida condition, degenerate differential inclusion, Cauchy problem, bounded solution
@article{DMDICO_2003_23_1_a4,
     author = {Baskakov, Anatolii and Obukhovskii, Valeri and Zecca, Pietro},
     title = {Multivalued linear operators and differential inclusions in {Banach} spaces},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {53--74},
     year = {2003},
     volume = {23},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a4/}
}
TY  - JOUR
AU  - Baskakov, Anatolii
AU  - Obukhovskii, Valeri
AU  - Zecca, Pietro
TI  - Multivalued linear operators and differential inclusions in Banach spaces
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2003
SP  - 53
EP  - 74
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a4/
LA  - en
ID  - DMDICO_2003_23_1_a4
ER  - 
%0 Journal Article
%A Baskakov, Anatolii
%A Obukhovskii, Valeri
%A Zecca, Pietro
%T Multivalued linear operators and differential inclusions in Banach spaces
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2003
%P 53-74
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a4/
%G en
%F DMDICO_2003_23_1_a4
Baskakov, Anatolii; Obukhovskii, Valeri; Zecca, Pietro. Multivalued linear operators and differential inclusions in Banach spaces. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 23 (2003) no. 1, pp. 53-74. http://geodesic.mathdoc.fr/item/DMDICO_2003_23_1_a4/

[1] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Topological methods in the theory of fixed points of multivalued mappings, (in Russian) Uspekhi Mat. Nauk 35 (1980), no.1(211), 59-126, English transl. in Russian Math. Surveys 35 (1980), 65-143.

[2] Yu.G. Borisovich, B.D. Gelman, A.D. Myshkis and V.V. Obukhovskii, Multivalued mappings, (Russian) Mathematical Analysis 19 pp.127-230, 232, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Techn. Informatsii, Moscow, 1982. English transl. in J. Soviet Math. 24 (1984), 719-791.

[3] R. Cross, Multivalued Linear Operators. Monographs and Textbooks in Pure and Applied Mathematics, 213. Marcel Dekker, Inc., New York, 1998.

[4] A. Favini and A. Yagi, Multivalued linear operators and degenerate evolution equations, Ann. Mat. Pura Appl. 163 (4) (1993), 353-384.

[5] A. Favini and A. Yagi, Degenerate Differential Equations in Banach Spaces. Monographs and Textbooks in Pure and Applied Mathematics, 215. Marcel Dekker, Inc., New York, 1999.

[6] M. Kamenskii, V. Obukhovskii and P. Zecca, Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces. de Gruyter Series in Nonlinear Analysis and Applications, 7. Walter de Gruyter Co., Berlin - New York, 2001.

[7] I.V. Mel'nikova and M.A. Al'shanskii, Well-posedness of the degenerate Cauchy problem in a Banach space, (in Russian) Dokl. Akad. Nauk 336 (1994), no.1, 17-20; English translation in Russian Acad. Sci. Dokl. Math. 49 (3) (1994), 449-453.

[8] I.V. Mel'nikova and A. Filinkov, Abstract Cauchy Problems: Three Approaches. Chapman Hall/CRC Monographs and Surveys in Pure and Applied Mathematics, 120. Chapman Hall/CRC, Boca Raton, FL, 2001.

[9] V.V. Obukhovskii, On some fixed point principles for multivalued condensing operators, (in Russian) Trudy Mat. Fac. Voronezh Univ. 4 (1971), 70-79.

[10] V. Obukhovskii and P. Zecca, On boundary value problems for degenerate differential inclusions in Banach spaces, Abstr. Appl. Anal. 13 (2003), 769-784.

[11] G.A. Sviridyuk, On the general theory of operator semigroups, (in Russian) Uspekhi Mat. Nauk 49 (1994), no. 4(208), 47-74; English translation in Russian Math. Surveys 49 (4) (1994), 45-74.

[12] G.A. Sviridyuk and V.E. Fedorov, Semigroups of operators with kernels, (in Russian) Vestnik Chelyabinsk Univ. Ser. 3 Mat. Mekh. 1 (6) (2002), 42-70.

[13] K. Yosida, Functional Analysis. Die Grundlehren der Mathematischen Wissenschaften, 123, Springer-Verlag, Berlin, 1965.

[14] A. Yagi, Generation theorem of semigroup for multivalued linear operators, Osaka J. Math. 28 (2) (1991), 385-410.