Decomposable hulls of multifunctions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 233-241
Cet article a éte moissonné depuis la source Library of Science
Let F be a multifunction with values in Lₚ(Ω, X). In this note, we study which regularity properties of F are preserved when we consider the decomposable hull of F.
Keywords:
decomposable set, multifunction, decomposable hull
@article{DMDICO_2002_22_2_a4,
author = {Nowak, Andrzej and Rom, Celina},
title = {Decomposable hulls of multifunctions},
journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
pages = {233--241},
year = {2002},
volume = {22},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a4/}
}
TY - JOUR AU - Nowak, Andrzej AU - Rom, Celina TI - Decomposable hulls of multifunctions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2002 SP - 233 EP - 241 VL - 22 IS - 2 UR - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a4/ LA - en ID - DMDICO_2002_22_2_a4 ER -
Nowak, Andrzej; Rom, Celina. Decomposable hulls of multifunctions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 233-241. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a4/
[1] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149-182.
[2] C.J. Himmelberg, Measurable relations, Fund. Math. 87 (1975), 53-72.
[3] Cz. Olech, Decomposability as substitute for convexity, in: Multifunctions and Integrands (ed. G. Salinetti), Lecture Notes in Math. 1091, Springer Verlag (1984), 193-205.
[4] A.A. Tolstonogov and D.A. Tolstonogov, Lₚ-continuous extreme selectors of multifunctions with decomposable values: Existence theorems, Set-Valued Anal. 4 (1996), 173-203.