Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2002_22_2_a0, author = {Ahmed, N.}, title = {Optimal control of impulsive stochastic evolution inclusions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {155--184}, publisher = {mathdoc}, volume = {22}, number = {2}, year = {2002}, zbl = {1044.49016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a0/} }
TY - JOUR AU - Ahmed, N. TI - Optimal control of impulsive stochastic evolution inclusions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2002 SP - 155 EP - 184 VL - 22 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a0/ LA - en ID - DMDICO_2002_22_2_a0 ER -
%0 Journal Article %A Ahmed, N. %T Optimal control of impulsive stochastic evolution inclusions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2002 %P 155-184 %V 22 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a0/ %G en %F DMDICO_2002_22_2_a0
Ahmed, N. Optimal control of impulsive stochastic evolution inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 2, pp. 155-184. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_2_a0/
[1] N.U. Ahmed, Impulsive perturbation of C₀ semigroups and evolution inclusions, Nonlinear Functional Analysis and Applications, (to appear).
[2] N.U. Ahmed, Impulsive perturbation of C₀ semigroups and stochastic evolution inclusions, Discuss. Math. Differential Inclusions, Control and Optimization 22 (1) (2002), 125-149.
[3] N.U. Ahmed, Vector measures for optimal control of impulsive systems in Banach spaces, Nonlinear Functional Analysis and Applications 5 (2) (2000), 95-106.
[4] N.U. Ahmed, Some remarks on the dynamics of impulsive systems in Banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems 8 (2001), 261-274.
[5] N.U. Ahmed, State dependent vector measures as feedback controls for impulsive systems in Banach spaces, Dynamics of Continuous, Discrete and Impulsive Systems 8 (2001), 251-261.
[6] N.U. Ahmed, Existence of solutions of nonlinear stochastic differential inclusions on Banach spaces, Proc. World Congress of Nonlinear Analysis' 92, (ed: V. Lakshmikantham), (1992), 1699-1712.
[7] N.U. Ahmed, Existence of optimal controls for a general class of impulsive systems on Banach spaces, SIAM Journal Contr. and Optim. (to appear).
[8] N.U. Ahmed, Necessary conditions of optimality for impulsive systems on Banach spaces, Nonlinear Analysis 51 (2002), 409-424.
[9] G. Da Prato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, Cambridge, England 1992.
[10] J. Diestel and J.J. Uhl, Jr., Vector Measures, AMS, Mathematical Surveys 15 (1977).
[11] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis, Kluwer Academic Publishers, Dordrecht, Boston, London 1997.
[12] J.H. Liu, Nonlinear impulsive evolution equations, dynamics of continuous, Discrete and Impulsive Systems 6 (1999), 77-85.
[13] J. Motyl, On the solution of stochastic differential inclusions, J. Math. Anal. and Appl. 192 (1995), 117-132.
[14] A.M. Samoilenk and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore 1995.
[15] A.V. Skorohod, Studies in the Theory of Random Processes, (Eng. Trans), Addison-Wesley Publishing Company, Inc. Reading, Massachusetts, (1965), First published by Kiev University Press 1961.
[16] A.I. Tulcea and C.I. Tulcea, Topics in the Theory of Lifting, Springer-Verlag, Berlin, Heidelberg, New York 1969.
[17] T. Yang, Impulsive Control Theory, Springer-Verlag, Berlin 2001.
[18] E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. 1, Fixed Point Theorems, Springer-Verlag New York, Berlin, Heidelberg, London, Paris, Tokyo, Hong Kong, Barcelona, Budapest.