Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2002_22_1_a2, author = {Ginchev, Ivan and Hoffmann, Armin}, title = {Approximation of set-valued functions by single-valued one}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {33--66}, publisher = {mathdoc}, volume = {22}, number = {1}, year = {2002}, zbl = {1039.90051}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a2/} }
TY - JOUR AU - Ginchev, Ivan AU - Hoffmann, Armin TI - Approximation of set-valued functions by single-valued one JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2002 SP - 33 EP - 66 VL - 22 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a2/ LA - en ID - DMDICO_2002_22_1_a2 ER -
%0 Journal Article %A Ginchev, Ivan %A Hoffmann, Armin %T Approximation of set-valued functions by single-valued one %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2002 %P 33-66 %V 22 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a2/ %G en %F DMDICO_2002_22_1_a2
Ginchev, Ivan; Hoffmann, Armin. Approximation of set-valued functions by single-valued one. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 22 (2002) no. 1, pp. 33-66. http://geodesic.mathdoc.fr/item/DMDICO_2002_22_1_a2/
[1] J.P. Aubin and A. Cellina, Differential Inclusions, Springer, Berlin, Heidelberg, New York, Tokyo 1984.
[2] P.K. Belobrov, K voprosu o chebyshevskom sentre mnozhestva, Izvestija vysshich uchebnych zavedenij 38 (1) (1964), 3-9. (in Russian)
[3] B. Bank, J. Guddat, D. Klatte, K. Kummer, K. Tammer, Non-Linear Parametric Optimization, Akademie Verlag Berlin 1982.
[4] F.H. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, A Wiley-Interscience Publication, John Wiley Sons, New York 1983.
[5] V.F. Demjanov and A.M. Rubinov, Constructive Nonsmooth Analysis, Verlag Peter Lang, Frankfurt am Main 1995.
[6] A.L. Garkavi, On the best net and the best cut of a set in a normed space, Izv. Akad. Nauk SSSR, Ser. Mat. 26 (1962), 87-106. (in Russian)
[7] A.L. Garkavi, On the Chebyshev center and the convex hull of a set, Usp. Mat. Nauk 19 (6) (1964), 139-145, (120). (in Russian)
[8] A.L. Garkavi, Minimax balayge theorem and an inscribed ball problem, Matematicheskie Zametki 30 (1) (1981), 109-121. (in Russian)
[9] I. Ginchev and A. Hoffmann, On the best approximation of set-valued functions, in: P. Gritzmann, R. Horst, E. Sachs, R. Tichatschke (eds.), Recent Advances in Optimization (Proc. of the 8th French-German Conference on Optimization, Trier, July 21-26, 1996, Lect. Notes Econ. Math. Syst. 452, Springer, Berlin Heidelberg 1997, 61-74.
[10] P.M. Gruber, The space of convex bodies, in: P.M. Gruber, J.M. Wills (eds.), Handbook of Convex Geometry, Volume A, North-Holland, Amsterdam 1993, 301-318.
[11] R. Hettich and P. Zencke, Numerische Methoden der Approximation und Semi-Infiniten Optimierung, B.G. Teubner, Leipzig 1982.
[12] A. Hoffmann, The distance to the intersection of two convex sets expressed by the distances to each of them, Math. Nachr. 157 (1992), 81-98.
[13] J.B. Hiriart Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms I, Springer Verlag, Berlin 1993.
[14] R.B. Holmes, Geometric Functional Analysis and its Applications, Graduate Texts in Mathematics 24, Springer, New York-Heidelberg-Berlin 1975.
[15] R. Horst and H. Tuy, Global Optimization, Deterministic Approaches, Springer, Berlin etc. 1990.
[16] P. Kosmol, Optimierung und Approximation, Walter de Gruyter, Berlin 1991.
[17] P.J. Laurent, Approximation et Optimisation, Enseignement des Sciences 13, Hermann, Paris 1972.
[18] K. Leichtweiss, Konvexe Mengen, Deutscher Verlag der Wissenschaften, Berlin 1980.
[19] L.E. Rybiński, Continuous Selections and Variational Systems, Monografie 61, Institute of Mathematics, Higher College of Engineering, Zielona Góra, Poland 1992, 100 pp, ISSN 0239-7390.
[20] R.T. Rockafellar and R.J.B. Wets, Variational Analysis, Grundlehren der mathematischen Wissenschaften 317, Springer, Berlin 1998.
[21] I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren der mathematischen Wissenschaften 171, Springer, Berlin 1970.