Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2001_21_2_a4, author = {Pastor, Karel}, title = {On relations among the generalized second-order directional derivatives}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {235--247}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, zbl = {1002.49021}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a4/} }
TY - JOUR AU - Pastor, Karel TI - On relations among the generalized second-order directional derivatives JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2001 SP - 235 EP - 247 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a4/ LA - en ID - DMDICO_2001_21_2_a4 ER -
%0 Journal Article %A Pastor, Karel %T On relations among the generalized second-order directional derivatives %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2001 %P 235-247 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a4/ %G en %F DMDICO_2001_21_2_a4
Pastor, Karel. On relations among the generalized second-order directional derivatives. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 235-247. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a4/
[1] J.M. Borwein, M. Fabián, On generic second-order Gâteaux differentiability, Nonlinear Anal. T.M.A 20 (1993), 1373-1382.
[2] J.M. Borwein and D. Noll, Second-order differentiability of convex functions in Banach spaces, Trans. Amer. Math. Soc. 342 (1994), 43-81.
[3] A. Ben-Tal and J. Zowe, Directional derivatives in nonsmooth optimization, J. Optim. Theory Appl. 47 (1985), 483-490.
[4] F.H. Clarke, Necessary conditions for nonsmooth problems in optimal control and the calculus of variations, Ph.D. thesis, Univ. of Washington 1973.
[5] F.H. Clarke, Optimization and nonsmooth analysis, J. Wiley, New York 1983.
[6] R. Cominetti, Equivalence between the classes of $C^{1,1}$ and twice locally Lipschitzian functions, Ph.D. thesis, Université Blaise Pascal 1989.
[7] R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM J. Control Optim. 28 (1990), 789-809.
[8] W.L. Chan, L.R. Huang and K.F. Ng, On generalized second-order derivatives and Taylor expansions in nosmooth optimiyation, SIAM J. Control Optim. 32 (1994), 789-809.
[9] P.G. Georgiev and N.P. Zlateva, Second-order subdifferentials of $C^{1,1}$ functions and optimality conditions, Set-Valued Analysis 4 (1996), 101-117.
[10] J.B. Hiriart-Urruty and C. Lemarchal, Convex Analysis nad Minimization Algorithms, Springer Verlag, Berlin 1993.
[11] L.R. Huang and K.F. Ng, On some relations between Chaney's generalized second-order directional derivative and that of Ben-Tal and Zowe, SIAM J. Control Optim. 34 (1996), 1220-1234.
[12] V. Jeyakumar and X.Q. Yang, Approximate generalized Hessians and Taylor's expansions for continously Gâteaux differentiable functions, Nonlinear Anal. T.M.A 36 (1999), 353-368.
[13] G. Lebourg, Generic differentiability of Lipschitz functions, Trans. Amer. Math. Soc. 256 (1979), 125-144.
[14] Y. Maruyama, Second-order necessary conditions for nonlinear problems in Banach spases and their applications to optimal control problems, Math. Programming 41 (1988), 73-96.
[15] P. Michel and J.P. Penot, Second-order moderate derivatives, Nonlinear Anal. T.M.A 22 (1994), 809-821.
[16] K. Pastor, Generalized second-order directional derivatives for locally Lipschitz functions, Preprint no. 17/2001 of Palacký Univerzity, Olomouc.
[17] R.T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-509.
[18] R.T. Rockafellar, Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. Oper. Res. 14 (1989), 462-484.
[19] X.Q. Yang, On relations and applications of generalized second-order directional derivatives, Non. Anal. T.M.A 36 (1999), 595-614.
[20] X.Q. Yang, On second-order directional derivatives, Non. Anal. T.M.A 26, 55-66.