On relations among the generalized second-order directional derivatives
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 235-247.

Voir la notice de l'article provenant de la source Library of Science

In the paper, we deal with the relations among several generalized second-order directional derivatives. The results partially solve the problem which of the second-order optimality conditions is more useful.
Keywords: generalized second-order directional derivative, convexity, second-order optimality conditions
@article{DMDICO_2001_21_2_a4,
     author = {Pastor, Karel},
     title = {On relations among the generalized second-order directional derivatives},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {235--247},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     zbl = {1002.49021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a4/}
}
TY  - JOUR
AU  - Pastor, Karel
TI  - On relations among the generalized second-order directional derivatives
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2001
SP  - 235
EP  - 247
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a4/
LA  - en
ID  - DMDICO_2001_21_2_a4
ER  - 
%0 Journal Article
%A Pastor, Karel
%T On relations among the generalized second-order directional derivatives
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2001
%P 235-247
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a4/
%G en
%F DMDICO_2001_21_2_a4
Pastor, Karel. On relations among the generalized second-order directional derivatives. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 235-247. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a4/

[1] J.M. Borwein, M. Fabián, On generic second-order Gâteaux differentiability, Nonlinear Anal. T.M.A 20 (1993), 1373-1382.

[2] J.M. Borwein and D. Noll, Second-order differentiability of convex functions in Banach spaces, Trans. Amer. Math. Soc. 342 (1994), 43-81.

[3] A. Ben-Tal and J. Zowe, Directional derivatives in nonsmooth optimization, J. Optim. Theory Appl. 47 (1985), 483-490.

[4] F.H. Clarke, Necessary conditions for nonsmooth problems in optimal control and the calculus of variations, Ph.D. thesis, Univ. of Washington 1973.

[5] F.H. Clarke, Optimization and nonsmooth analysis, J. Wiley, New York 1983.

[6] R. Cominetti, Equivalence between the classes of $C^{1,1}$ and twice locally Lipschitzian functions, Ph.D. thesis, Université Blaise Pascal 1989.

[7] R. Cominetti and R. Correa, A generalized second-order derivative in nonsmooth optimization, SIAM J. Control Optim. 28 (1990), 789-809.

[8] W.L. Chan, L.R. Huang and K.F. Ng, On generalized second-order derivatives and Taylor expansions in nosmooth optimiyation, SIAM J. Control Optim. 32 (1994), 789-809.

[9] P.G. Georgiev and N.P. Zlateva, Second-order subdifferentials of $C^{1,1}$ functions and optimality conditions, Set-Valued Analysis 4 (1996), 101-117.

[10] J.B. Hiriart-Urruty and C. Lemarchal, Convex Analysis nad Minimization Algorithms, Springer Verlag, Berlin 1993.

[11] L.R. Huang and K.F. Ng, On some relations between Chaney's generalized second-order directional derivative and that of Ben-Tal and Zowe, SIAM J. Control Optim. 34 (1996), 1220-1234.

[12] V. Jeyakumar and X.Q. Yang, Approximate generalized Hessians and Taylor's expansions for continously Gâteaux differentiable functions, Nonlinear Anal. T.M.A 36 (1999), 353-368.

[13] G. Lebourg, Generic differentiability of Lipschitz functions, Trans. Amer. Math. Soc. 256 (1979), 125-144.

[14] Y. Maruyama, Second-order necessary conditions for nonlinear problems in Banach spases and their applications to optimal control problems, Math. Programming 41 (1988), 73-96.

[15] P. Michel and J.P. Penot, Second-order moderate derivatives, Nonlinear Anal. T.M.A 22 (1994), 809-821.

[16] K. Pastor, Generalized second-order directional derivatives for locally Lipschitz functions, Preprint no. 17/2001 of Palacký Univerzity, Olomouc.

[17] R.T. Rockafellar, Characterization of the subdifferentials of convex functions, Pacific J. Math. 17 (1966), 497-509.

[18] R.T. Rockafellar, Second-order optimality conditions in nonlinear programming obtained by way of epi-derivatives, Math. Oper. Res. 14 (1989), 462-484.

[19] X.Q. Yang, On relations and applications of generalized second-order directional derivatives, Non. Anal. T.M.A 36 (1999), 595-614.

[20] X.Q. Yang, On second-order directional derivatives, Non. Anal. T.M.A 26, 55-66.