Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2001_21_2_a2, author = {Fiacca, Antonella and Servadei, Raffaella}, title = {Extremal solutions for nonlinear neumann problems}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {191--206}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, zbl = {1013.35035}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a2/} }
TY - JOUR AU - Fiacca, Antonella AU - Servadei, Raffaella TI - Extremal solutions for nonlinear neumann problems JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2001 SP - 191 EP - 206 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a2/ LA - en ID - DMDICO_2001_21_2_a2 ER -
%0 Journal Article %A Fiacca, Antonella %A Servadei, Raffaella %T Extremal solutions for nonlinear neumann problems %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2001 %P 191-206 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a2/ %G en %F DMDICO_2001_21_2_a2
Fiacca, Antonella; Servadei, Raffaella. Extremal solutions for nonlinear neumann problems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a2/
[1] R. Adams, Sobolev Spaces, Academic Press, New York 1975.
[2] R.B. Ash, Real Analysis and Probability, Academic Press, New York, San Francisco, London 1972.
[3] H. Brézis, Analyse Functionelle: Théorie et Applications, Masson, Paris 1983.
[4] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. Funct. Anal. 11 (1972), 251-294.
[5] T. Cardinali, N.S. Papageorgiou and R. Servadei, The Neumann Problem for Quasilinear Differential Equations, preprint.
[6] E. Casas and L.A. Fernández, A Green's Formula for Quasilinear Elliptic Operators, J. Math. Anal. Appl. 142 (1989), 62-73.
[7] E. Dancer and G. Sweers, On the Existence of a Maximal Weak Solution for a Semilinear Elliptic Equation, Diff. Integral Eqns 2 (1989), 533-540.
[8] J. Deuel and P. Hess, A Criterion for the Existence of Solutions of Nonlinear Elliptic Boundary Value Problems, Proc. Royal Soc. Edinburgh (A) 74 (1974-75), 49-54.
[9] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, New York 1958-1971.
[10] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin 1983.
[11] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1975.
[12] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwert, Dordrecht, The Netherlands 1997.
[13] N. Kenmochi, Pseudomonotone Operators and Nonlinear Elliptic Boundary Value Problems, J. Math. Soc. Japan 27 (1975), 121-149.
[14] J. Leray and J.L. Lions, Quelques Resultats de Visik sur les Problems Elliptiques Nonlinearities par Methodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.
[15] J.J. Nieto and A. Cabada, A Generalized Upper and Lower Solutions Method for Nonlinear Second Order Ordinary Differential Equations, J. Appl. Math. Stochastic Anal. 5 (2) (1992), 157-165.
[16] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990.