Extremal solutions for nonlinear neumann problems
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 191-206.

Voir la notice de l'article provenant de la source Library of Science

In this paper, we study a nonlinear Neumann problem. Assuming the existence of an upper and a lower solution, we prove the existence of a least and a greatest solution between them. Our approach uses the theory of operators of monotone type together with truncation and penalization techniques.
Keywords: upper solution, lower solution, order interval, truncation function, penalty function, pseudomonotone operator, coercive operator, extremal solution
@article{DMDICO_2001_21_2_a2,
     author = {Fiacca, Antonella and Servadei, Raffaella},
     title = {Extremal solutions for nonlinear neumann problems},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {191--206},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     zbl = {1013.35035},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a2/}
}
TY  - JOUR
AU  - Fiacca, Antonella
AU  - Servadei, Raffaella
TI  - Extremal solutions for nonlinear neumann problems
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2001
SP  - 191
EP  - 206
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a2/
LA  - en
ID  - DMDICO_2001_21_2_a2
ER  - 
%0 Journal Article
%A Fiacca, Antonella
%A Servadei, Raffaella
%T Extremal solutions for nonlinear neumann problems
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2001
%P 191-206
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a2/
%G en
%F DMDICO_2001_21_2_a2
Fiacca, Antonella; Servadei, Raffaella. Extremal solutions for nonlinear neumann problems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 191-206. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a2/

[1] R. Adams, Sobolev Spaces, Academic Press, New York 1975.

[2] R.B. Ash, Real Analysis and Probability, Academic Press, New York, San Francisco, London 1972.

[3] H. Brézis, Analyse Functionelle: Théorie et Applications, Masson, Paris 1983.

[4] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. Funct. Anal. 11 (1972), 251-294.

[5] T. Cardinali, N.S. Papageorgiou and R. Servadei, The Neumann Problem for Quasilinear Differential Equations, preprint.

[6] E. Casas and L.A. Fernández, A Green's Formula for Quasilinear Elliptic Operators, J. Math. Anal. Appl. 142 (1989), 62-73.

[7] E. Dancer and G. Sweers, On the Existence of a Maximal Weak Solution for a Semilinear Elliptic Equation, Diff. Integral Eqns 2 (1989), 533-540.

[8] J. Deuel and P. Hess, A Criterion for the Existence of Solutions of Nonlinear Elliptic Boundary Value Problems, Proc. Royal Soc. Edinburgh (A) 74 (1974-75), 49-54.

[9] N. Dunford and J.T. Schwartz, Linear Operators. Part I: General Theory, Interscience Publishers, New York 1958-1971.

[10] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin 1983.

[11] E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer, New York 1975.

[12] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwert, Dordrecht, The Netherlands 1997.

[13] N. Kenmochi, Pseudomonotone Operators and Nonlinear Elliptic Boundary Value Problems, J. Math. Soc. Japan 27 (1975), 121-149.

[14] J. Leray and J.L. Lions, Quelques Resultats de Visik sur les Problems Elliptiques Nonlinearities par Methodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-107.

[15] J.J. Nieto and A. Cabada, A Generalized Upper and Lower Solutions Method for Nonlinear Second Order Ordinary Differential Equations, J. Appl. Math. Stochastic Anal. 5 (2) (1992), 157-165.

[16] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990.