Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2001_21_2_a0, author = {Benchohra, Mouffak and Boucherif, Abdelkader and Nieto, Juan}, title = {On initial value problems for a class of first order impulsive differential inclusions}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {159--171}, publisher = {mathdoc}, volume = {21}, number = {2}, year = {2001}, zbl = {1005.34007}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a0/} }
TY - JOUR AU - Benchohra, Mouffak AU - Boucherif, Abdelkader AU - Nieto, Juan TI - On initial value problems for a class of first order impulsive differential inclusions JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2001 SP - 159 EP - 171 VL - 21 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a0/ LA - en ID - DMDICO_2001_21_2_a0 ER -
%0 Journal Article %A Benchohra, Mouffak %A Boucherif, Abdelkader %A Nieto, Juan %T On initial value problems for a class of first order impulsive differential inclusions %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2001 %P 159-171 %V 21 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a0/ %G en %F DMDICO_2001_21_2_a0
Benchohra, Mouffak; Boucherif, Abdelkader; Nieto, Juan. On initial value problems for a class of first order impulsive differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 159-171. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a0/
[1] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston 1990.
[2] J.M. Ayerbe, T. Dominguez and G. Lopez-Acebo, Measure of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel 1997.
[3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York 1980.
[4] M. Benchohra and A. Boucherif, On first order initial value problems for impulsive differential inclusions in Banach Spaces, Dyn. Syst. Appl. 8 (1) (1999), 119-126.
[5] M. Benchohra and A. Boucherif, Initial Value Problems for Impulsive Differential Inclusions of First Order, Diff. Eq. and Dynamical Systems 8 (1) (2000), 51-66.
[6] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.
[7] L. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rockey Mountain J. Math. 22 (1992), 519-539.
[8] D. Franco, Problemas de frontera para ecuaciones diferenciales con impulsos, Ph.D Thesis, Univ. Santiago de Compostela (Spain), 2000 (in Spanish).
[9] M. Frigon and D. O'Regan, Existence results for first order impulsive differential equations, J. Math. Anal. Appl. 193, (1995), 96-113.
[10] M. Frigon and D. O'Regan, Boundary value problems for second order impulsive differential equations using set-valued maps, Rapport DMS-357, University of Montreal 1993.
[11] M. Frigon and D. O'Regan, First order impulsive initial and periodic value problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730-739.
[12] M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires, Dissertationes Math. 296 (1990), 1-79.
[13] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer, Dordrecht, Boston, London 1997.
[14] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore 1989.
[15] X. Liu, Nonlinear boundary value problems for first order impulsive differential equations, Appl. Anal. 36 (1990), 119-130.
[16] E. Liz and J.J. Nieto, Positive solutions of linear impulsive differential equations, Commun. Appl. Anal. 2 (4) (1998), 565-571.
[17] E. Liz, Problemas de frontera para nuevos tipos de ecuaciones diferenciales, Ph.D Thesis, Univ. Vigo (Spain) 1994 (in Spanish).
[18] M. Martelli, A Rothe's type theorem for non compact acyclic-valued maps, Boll. Un. Mat. Ital. 4 (3) (1975), 70-76.
[19] C. Pierson-Gorez, Problèmes aux Limites Pour des Equations Différentielles avec Impulsions, Ph.D. Thesis, Univ. Louvain-la-Neuve, Belgium 1993 (in French).
[20] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore 1995.
[21] D. Yujun and Z. Erxin, An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations, J. Math. Anal. Appl. 197 (1996), 875-889.