On initial value problems for a class of first order impulsive differential inclusions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 159-171.

Voir la notice de l'article provenant de la source Library of Science

We investigate the existence of solutions to first order initial value problems for differential inclusions subject to impulsive effects. We shall rely on a fixed point theorem for condensing maps to prove our results.
Keywords: impulsive initial value problem, set-valued map, condensing map, fixed point
@article{DMDICO_2001_21_2_a0,
     author = {Benchohra, Mouffak and Boucherif, Abdelkader and Nieto, Juan},
     title = {On initial value problems for a class of first order impulsive differential inclusions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {159--171},
     publisher = {mathdoc},
     volume = {21},
     number = {2},
     year = {2001},
     zbl = {1005.34007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a0/}
}
TY  - JOUR
AU  - Benchohra, Mouffak
AU  - Boucherif, Abdelkader
AU  - Nieto, Juan
TI  - On initial value problems for a class of first order impulsive differential inclusions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2001
SP  - 159
EP  - 171
VL  - 21
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a0/
LA  - en
ID  - DMDICO_2001_21_2_a0
ER  - 
%0 Journal Article
%A Benchohra, Mouffak
%A Boucherif, Abdelkader
%A Nieto, Juan
%T On initial value problems for a class of first order impulsive differential inclusions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2001
%P 159-171
%V 21
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a0/
%G en
%F DMDICO_2001_21_2_a0
Benchohra, Mouffak; Boucherif, Abdelkader; Nieto, Juan. On initial value problems for a class of first order impulsive differential inclusions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 2, pp. 159-171. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_2_a0/

[1] J.P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäuser, Boston 1990.

[2] J.M. Ayerbe, T. Dominguez and G. Lopez-Acebo, Measure of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel 1997.

[3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Marcel Dekker, New York 1980.

[4] M. Benchohra and A. Boucherif, On first order initial value problems for impulsive differential inclusions in Banach Spaces, Dyn. Syst. Appl. 8 (1) (1999), 119-126.

[5] M. Benchohra and A. Boucherif, Initial Value Problems for Impulsive Differential Inclusions of First Order, Diff. Eq. and Dynamical Systems 8 (1) (2000), 51-66.

[6] K. Deimling, Multivalued Differential Equations, Walter De Gruyter, Berlin-New York, 1992.

[7] L. Erbe and W. Krawcewicz, Existence of solutions to boundary value problems for impulsive second order differential inclusions, Rockey Mountain J. Math. 22 (1992), 519-539.

[8] D. Franco, Problemas de frontera para ecuaciones diferenciales con impulsos, Ph.D Thesis, Univ. Santiago de Compostela (Spain), 2000 (in Spanish).

[9] M. Frigon and D. O'Regan, Existence results for first order impulsive differential equations, J. Math. Anal. Appl. 193, (1995), 96-113.

[10] M. Frigon and D. O'Regan, Boundary value problems for second order impulsive differential equations using set-valued maps, Rapport DMS-357, University of Montreal 1993.

[11] M. Frigon and D. O'Regan, First order impulsive initial and periodic value problems with variable moments, J. Math. Anal. Appl. 233 (1999), 730-739.

[12] M. Frigon, Application de la théorie de la transversalité topologique à des problèmes non linéaires pour des équations différentielles ordinaires, Dissertationes Math. 296 (1990), 1-79.

[13] Sh. Hu and N. Papageorgiou, Handbook of Multivalued Analysis, Vol. I: Theory, Kluwer, Dordrecht, Boston, London 1997.

[14] V. Lakshmikantham, D.D. Bainov and P.S. Simeonov, Theory of Impulsive Differential Equations, World Scientific, Singapore 1989.

[15] X. Liu, Nonlinear boundary value problems for first order impulsive differential equations, Appl. Anal. 36 (1990), 119-130.

[16] E. Liz and J.J. Nieto, Positive solutions of linear impulsive differential equations, Commun. Appl. Anal. 2 (4) (1998), 565-571.

[17] E. Liz, Problemas de frontera para nuevos tipos de ecuaciones diferenciales, Ph.D Thesis, Univ. Vigo (Spain) 1994 (in Spanish).

[18] M. Martelli, A Rothe's type theorem for non compact acyclic-valued maps, Boll. Un. Mat. Ital. 4 (3) (1975), 70-76.

[19] C. Pierson-Gorez, Problèmes aux Limites Pour des Equations Différentielles avec Impulsions, Ph.D. Thesis, Univ. Louvain-la-Neuve, Belgium 1993 (in French).

[20] A.M. Samoilenko and N.A. Perestyuk, Impulsive Differential Equations, World Scientific, Singapore 1995.

[21] D. Yujun and Z. Erxin, An application of coincidence degree continuation theorem in existence of solutions of impulsive differential equations, J. Math. Anal. Appl. 197 (1996), 875-889.