Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2001_21_1_a4, author = {Bader, Ralf and Papageorgiou, Nikolaos}, title = {Nonlinear multivalued boundary value problems}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {127--148}, publisher = {mathdoc}, volume = {21}, number = {1}, year = {2001}, zbl = {0999.34010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a4/} }
TY - JOUR AU - Bader, Ralf AU - Papageorgiou, Nikolaos TI - Nonlinear multivalued boundary value problems JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2001 SP - 127 EP - 148 VL - 21 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a4/ LA - en ID - DMDICO_2001_21_1_a4 ER -
%0 Journal Article %A Bader, Ralf %A Papageorgiou, Nikolaos %T Nonlinear multivalued boundary value problems %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2001 %P 127-148 %V 21 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a4/ %G en %F DMDICO_2001_21_1_a4
Bader, Ralf; Papageorgiou, Nikolaos. Nonlinear multivalued boundary value problems. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 21 (2001) no. 1, pp. 127-148. http://geodesic.mathdoc.fr/item/DMDICO_2001_21_1_a4/
[1] R. Bader, A topological fixed point theory for evolution inclusions, submitted.
[2] R. Bader and N.S. Papageorgiou, Quasilinear vector differential equations with maximal monotone terms and nonlinear boundary conditions, Annales Polonici Math. LXIII (2000), 69-93.
[3] L. Boccardo, P. Drabek, D. Giachetti and M. Kucera, Generalization of Fredholm alternative for nonlinear differential operators, Nonlinear Anal. 10 (1986), 1083-1103.
[4] H. Dang and S.F. Oppenheimer, Existence and uniqueness results for some nonlinear boundary value problems, J. Math. Anal. Appl. 198 (1996), 35-48.
[5] M. Del Pino, M. Elgueta and R. Manasevich, A homotopic deformation along p of a Leray-Schauder degree result and existence for $(|u'|^{p-2} u')' + f(t,u) = 0$, u(0) = u(T) = 0, J. Diff. Eqns 80 (1989), 1-13.
[6] M. Del Pino, R. Manasevich and A. Murua, Existence and multiplicity of solutions with prescribed period for a second order quasilinear o.d.e., Nonlinear Anal. 18 (1992), 79-92.
[7] L. Erbe and W. Krawcewicz, Nonlinear boundary value problems for differential inclusions y'' ∈ F(t,y(t),y'(t)), Annales Polonici Math. 54 (1991), 195-226.
[8] C. Fabry and D. Fayyad, Periodic solutions of second order differential equations with a p-Laplacian and asymmetric nonlinearities, Rend. Istit. Mat. Univ. Trieste 24 (1992), 207-227.
[9] M. Frigon, Theoremes d'existence des solutions d'inclusions differentielles, NATO ASI Series, section C, vol. 472, Kluwer, Dordrecht, The Netherlands (1995), 51-87.
[10] Z. Guo, Boundary value problems of a class of quasilinear ordinary differential equations, Diff. Integral Eqns 6 (1993), 705-719.
[11] N. Halidias and N.S. Papageorgiou, Existence and relaxation results for nonlinear second order multivalued boundary value problems in $ℝ^N$, J. Diff. Eqns 147 (1998), 123-154.
[12] P. Hartman, Ordinary Differential Equations, J. Wiley, New York 1964.
[13] S. Hu and N.S. Papageorgiou, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands 1997.
[14] D. Kandilakis and N.S. Papageorgiou, Existence theorems for nonlinear boundary value problems for second order differential inclusions, J. Diff. Eqns 132 (1996), 107-125.
[15] R. Manasevich and J. Mawhin, Periodic solutions for nonlinear systems with p-Laplacian-like operators, J. Diff. Eqns 145 (1998), 367-393.
[16] M. Marcus and V. Mizel, Absolute continuity on tracks and mappings of Sobolev spaces , Arch. Rational Mech. Anal. 45 (1972), 294-320.
[17] E. Zeidler, Nonlinear Functional Analysis and its Applications II, Springer-Verlag, New York 1990.