Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2000_20_2_a5, author = {Bednarczuk, Ewa}, title = {On lower {Lipschitz} continuity of minimal points}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {245--255}, publisher = {mathdoc}, volume = {20}, number = {2}, year = {2000}, zbl = {0977.90047}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a5/} }
TY - JOUR AU - Bednarczuk, Ewa TI - On lower Lipschitz continuity of minimal points JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2000 SP - 245 EP - 255 VL - 20 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a5/ LA - en ID - DMDICO_2000_20_2_a5 ER -
Bednarczuk, Ewa. On lower Lipschitz continuity of minimal points. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 2, pp. 245-255. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a5/
[1] T. Amahroq and L. Thibault, On proto-differentiability and strict proto-differentiability of multifunctions of feasible points in perturbed optimization problems, Numerical Functional Analysis and Optimization 16 (1995), 1293-1307.
[2] J.-P. Aubin and H. Frankowska, Set-valued Analysis, Birkhauser 1990.
[3] E. Bednarczuk, Berge-type theorems for vector optimization problems, optimization, 32 (1995), 373-384.
[4] E. Bednarczuk, On lower semicontinuity of minimal points, to appear in Nonlinear Analysis, Theory and Applications.
[5] E. Bednarczuk and W. Song, PC points and their application to vector optimization, Pliska Stud. Math. Bulgar. 12 (1998), 1001-1010.
[6] N. Bolintineanu and A. El-Maghri, On the sensitivity of efficient points, Revue Roumaine de Mathematiques Pures et Appliques 42 (1997), 375-382
[7] M.P. Davidson, Lipschitz continuity of Pareto optimal extreme points, Vestnik Mosk. Univer. Ser. XV, Vychisl. Mat. Kiber. 63 (1996), 41-45.
[8] M.P. Davidson, Conditions for stability of a set of extreme points of a polyhedron and their applications, Ross. Akad. Nauk, Vychisl. Tsentr, Moscow 1996.
[9] M.P. Davidson, On the Lipschitz stability of weakly Slater systems of convex inequalities, Vestnik Mosk. Univ., Ser. XV (1998), 24-28.
[10] Deng-Sien, On approximate solutions in convex vector optimization, SIAM Journal on Control and Optimization 35 (1997), 2128-2136.
[11] A. Dontchev and T. Rockafellar, Characterization of Lipschitzian stability, pp. 65-82, Mathematical Programming with Data Perturbations, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker 1998.
[12] J. Jahn, Mathematical Vector Optimization in Partially Ordered Linear Spaces, Verlag Peter Lang, Frankfurt 1986.
[13] R. Janin and J. Gauvin, Lipschitz dependence of the optimal solutions to elementary convex programs, Proceedings of the 2nd Catalan Days on Applied Mathematics, Presses University, Perpignan 1995.
[14] Wu-Li, Error bounds for piecewise convex quadratic programs and applications, SIAM Journal on Control and Optimization 33 (1995), 1510-1529.
[15] D.T. Luc, Theory of Vector Optimization, Springer Verlag, Berlin 1989.
[16] K. Malanowski, Stability of Solutions to Convex Problems of Optimization, Lecture Notes in Control and Information Sciences 93 Springer Verlag.
[17] E.K. Makarov and N.N. Rachkovski, Unified representation of proper efficiencies by means of dilating cones, JOTA 101 (1999), 141-165.
[18] B. Mordukhovich, Sensitivity analysis for constraints and variational systems by means of set-valued differentiation, Optimization 31 (1994), 13-43.
[19] B. Mordukhovich and Shao Yong Heng, Differential characterisations of convering, metric regularity and Lipschitzian properties of multifunctions between Banach spaces, Nonlinear Analysis, Theory, Methods, and Applications 25 (1995), 1401-1424.
[20] D. Pallaschke and S. Rolewicz, Foundation of Mathematical Optimization, Math. Appl. 388, Kluwer, Dordecht 1997.
[21] R.T. Rockafellar, Lipschitzian properties of multifunctions, Nonlinear Analysis, Theory, Methods and Applications 9 (1985), 867-885.
[22] N. Zheng, Proper efficiency in locally convex topological vector spaces, JOTA 94 (1997), 469-486.
[23] N.D. Yen, Lipschitz continuity of solutions of variational inequalities with a parametric polyhedral constraint, Mathematics of OR 20 (1995), 695-705.
[24] X.Q. Yang, Directional derivatives for set-valued mappings and applications, Mathematical Methods of OR 48 (1998), 273-283.