On weak sharp minima for a special class of nonsmooth functions
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 2, pp. 195-207.

Voir la notice de l'article provenant de la source Library of Science

We present a characterization of weak sharp local minimizers of order one for a function f: ℝⁿ → ℝ defined by f(x): = maxf_i(x)| i = 1,...,p, where the functions f_i are strictly differentiable. It is given in terms of the gradients of f_i and the Mordukhovich normal cone to a given set on which f is constant. Then we apply this result to a smooth nonlinear programming problem with constraints.
Keywords: weak sharp minimizer of order one, maximum function, strictly differentiable function, normal cone
@article{DMDICO_2000_20_2_a3,
     author = {Studniarski, Marcin},
     title = {On weak sharp minima for a special class of nonsmooth functions},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {195--207},
     publisher = {mathdoc},
     volume = {20},
     number = {2},
     year = {2000},
     zbl = {1012.49014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a3/}
}
TY  - JOUR
AU  - Studniarski, Marcin
TI  - On weak sharp minima for a special class of nonsmooth functions
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2000
SP  - 195
EP  - 207
VL  - 20
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a3/
LA  - en
ID  - DMDICO_2000_20_2_a3
ER  - 
%0 Journal Article
%A Studniarski, Marcin
%T On weak sharp minima for a special class of nonsmooth functions
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2000
%P 195-207
%V 20
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a3/
%G en
%F DMDICO_2000_20_2_a3
Studniarski, Marcin. On weak sharp minima for a special class of nonsmooth functions. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 2, pp. 195-207. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_2_a3/

[1] J.F. Bonnans and A. Ioffe, Second-order sufficiency and quadratic growth for nonisolated minima, Math. Oper. Res. 20 (1995), 801-817.

[2] J.M. Borwein, Stability and regular points of inequality systems, J. Optim. Theory Appl. 48 (1986), 9-52.

[3] J.V. Burke and M.C. Ferris, Weak sharp minima in mathematical programming, SIAM J. Control Optim. 31 (1993), 1340-1359.

[4] F.H. Clarke, Yu.S. Ledyaev, R.J. Stern and P.R. Wolenski, Nonsmooth Analysis and Control Theory, Springer-Verlag, New York 1998.

[5] D. Pallaschke and S. Rolewicz, Foundations of Mathematical Optimization. Convex Analysis without Linearity, Kluwer Academic Publishers, Dordrecht 1997.

[6] R.T. Rockafellar and R.J-B. Wets, Variational Analysis, Springer-Verlag, Berlin 1998.

[7] M. Studniarski, Necessary and sufficient conditions for isolated local minima of nonsmooth functions, SIAM J. Control Optim. 24 (1986), 1044-1049.

[8] M. Studniarski, Second-order necessary conditions for optimality in nonsmooth nonlinear programming, J. Math. Anal. Appl. 154 (1991), 303-317.

[9] M. Studniarski, Characterizations of strict local minima for some nonlinear programming problems, Nonlinear Anal. 30 (1997), 5363-5367 (Proc. 2nd World Congress of Nonlinear Analysts).

[10] M. Studniarski, Characterizations of weak sharp minima of order one in nonlinear programming, System Modelling and Optimization (Detroit, MI, 1997), 207-215, Chapman Hall/CRC Res. Notes Math., 396, 1999.

[11] M. Studniarski and M. Studniarska, New characterizations of weak sharp and strict local minimizers in nonlinear programming, Preprint 1999/15, Faculty of Mathematics, University of ód\'z.

[12] M. Studniarski and D.E. Ward, Weak sharp minima: characterizations and sufficient conditions, SIAM J. Control Optim. 38 (1999), 219-236.