Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2000_20_1_a2, author = {Gasi\'nski, Leszek}, title = {An optimal shape design problem for a hyperbolic hemivariational inequality}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {41--50}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, zbl = {0964.49008}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a2/} }
TY - JOUR AU - Gasiński, Leszek TI - An optimal shape design problem for a hyperbolic hemivariational inequality JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2000 SP - 41 EP - 50 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a2/ LA - en ID - DMDICO_2000_20_1_a2 ER -
%0 Journal Article %A Gasiński, Leszek %T An optimal shape design problem for a hyperbolic hemivariational inequality %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2000 %P 41-50 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a2/ %G en %F DMDICO_2000_20_1_a2
Gasiński, Leszek. An optimal shape design problem for a hyperbolic hemivariational inequality. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 1, pp. 41-50. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a2/
[1] W. Bian, Existence Results for Second Order Nonlinear Evolution Inclusions, Indian J. Pure Appl. Math. 29 (11) (1998), 1177-1193.
[2] F.E. Browder and P. Hess, Nonlinear Mappings of Monotone Type in Banach Spaces, J. of Funct. Anal. 11 (1972), 251-294.
[3] K.C. Chang, Variational methods for nondifferentiable functionals and applications to partial differential equations, J. Math. Anal. Appl. 80 (1981), 102-129.
[4] F.H. Clarke, Optimization and Nonsmooth Analysis, John Wiley Sons, New York 1983.
[5] Z. Denkowski and S. Migórski, Optimal Shape Design Problems for a Class of Systems Described by Hemivariational Inequality, J. Global. Opt. 12 (1998), 37-59.
[6] L. Gasiński, Optimal Shape Design Problems for a Class of Systems Described by Parabolic Hemivariational Inequality, J. Global. Opt. 12 (1998), 299-317.
[7] L. Gasiński, Hyperbolic Hemivariational Inequalities, in preparation.
[8] W.B. Liu and J.E. Rubio, Optimal Shape Design for Systems Governed by Variational Inequalities, Part 1: Existence Theory for the Elliptic Case, Part 2: Existence Theory for Evolution Case, J. Optim. Th. Appl. 69 (1991), 351-371, 373-396.
[9] A.M. Micheletti, Metrica per famiglie di domini limitati e proprieta generiche degli autovalori, Annali della Scuola Normale Superiore di Pisa 28 (1972), 683-693.
[10] J.J. Moreau, Le Notions de Sur-potential et les Liaisons Unilatérales en Élastostatique, C.R. Acad. Sc. Paris 267A (1968), 954-957.
[11] J.J. Moreau, P.D. Panagiotopoulos and G. Strang, Topics in Nonsmooth Mechanics, Birkhäuser, Basel 1988.
[12] F. Murat and J. Simon, Sur le Controle par un Domaine Geometrique, Preprint no. 76015, University of Paris 6 (1976), 725-734.
[13] Z. Naniewicz and P.D. Panagiotopoulos, Mathematical Theory of Hemivariational Inequalities and Applications, Dekker, New York 1995.
[14] P.D. Panagiotopoulos, Nonconvex Superpotentials in the Sense of F.H. Clarke and Applications, Mech. Res. Comm. 8 (1981), 335-340.
[15] P.D. Panagiotopoulos, Nonconvex problems of semipermeable media and related topics, Z. Angew. Math. Mech. 65 (1985), 29-36.
[16] P.D. Panagiotopoulos, Inequality Problems in Mechanics and Applications. Convex and Nonconvex Energy Functions, Birkhäuser, Basel 1985.
[17] O. Pironneau, Optimal Shape Design for Elliptic Systems, Springer-Verlag, New York 1984.
[18] J. Sokołowski and J.P. Zolesio, Introduction to Shape Optimization. Shape Sensitivity Analysis, Springer Verlag 1992.