Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2000_20_1_a1, author = {Schott, Dieter}, title = {Signal reconstruction from given phase of the {Fourier} transform using {Fej\'er} monotone methods}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {27--40}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, zbl = {1013.94512}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a1/} }
TY - JOUR AU - Schott, Dieter TI - Signal reconstruction from given phase of the Fourier transform using Fejér monotone methods JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2000 SP - 27 EP - 40 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a1/ LA - en ID - DMDICO_2000_20_1_a1 ER -
%0 Journal Article %A Schott, Dieter %T Signal reconstruction from given phase of the Fourier transform using Fejér monotone methods %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2000 %P 27-40 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a1/ %G en %F DMDICO_2000_20_1_a1
Schott, Dieter. Signal reconstruction from given phase of the Fourier transform using Fejér monotone methods. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 1, pp. 27-40. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a1/
[1] H.H. Bauschke and J.M. Borwein, On projection algorithms for solving convex feasibility problems, SIAM Rev. 38 (1996), 367-426.
[2] P.L. Combettes, Fejér-monotonicity in convex optimization, in: C.A. Floudas and P.M. Pardalos (eds.), Encyclopedia of Optimization, Kluwer Acad. Publ., Dordrecht 2000.
[3] L.G. Gubin, B.T. Polyak and E.V. Raik, The method of projections for finding the common point of convex sets, USSR Comput. Math. Math. Phys. 7 (1967), 1-24.
[4] M.H. Hayes, J.S. Lim and A.V. Oppenheim, Signal reconstruction from phase or magnitude, IEEE Trans. Acoust. Speech and Signal Process. ASSP-28 (1980), 672-680.
[5] M.H. Hayes, The reconstruction of a multidimensional sequence from the phase or magnitude of its Fourier transform, IEEE Trans. Acoust. Speech and Signal Process. ASSP-30 (1982), 140-154.
[6] A. Levi and H. Stark, Restoration from Phase and Magnitude by Generalized Projections, in: [] , Chapter 8, 277-320.
[7] D. Schott, Iterative solution of convex problems by Fejér monotone methods, Numer. Funct. Anal. Optimiz. 16 (1995), 1323-1357.
[8] D. Schott, Basic properties of Fejér monotone mappings, Rostock. Math. Kolloq. 50 (1997), 71-84.
[9] D. Schott, Weak convergence of iterative methods generated by strongly Fejér monotone methods, Rostock. Math. Kolloq. 51 (1997), 83-96.
[10] D. Schott, About strongly Fejér monotone mappings and their relaxations, Zeitschr. Anal. Anw. 16 (1997), 709-726.
[11] H. Stark (ed.), Image recovery: Theory and applications, Academic Press, New York 1987.
[12] D.C. Youla, Mathematical Theory of Image Restoration by the Method of Convex Projections, in: [11], Chapter 2, 29-76.