Penalty/barrier path-following in linearly constrained optimization
Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 1, pp. 7-26.

Voir la notice de l'article provenant de la source Library of Science

In the present paper rather general penalty/barrier path-following methods (e.g. with p-th power penalties, logarithmic barriers, SUMT, exponential penalties) applied to linearly constrained convex optimization problems are studied. In particular, unlike in previous studies [1,11], here simultaneously different types of penalty/barrier embeddings are included. Together with the assumed 2nd order sufficient optimality conditions this required a significant change in proving the local existence of some continuously differentiable primal and dual path related to these methods. In contrast to standard penalty/barrier investigations in the considered path-following algorithms only one Newton step is applied to the generated auxiliary problems. As a foundation of convergence analysis the radius of convergence of Newton's method depending on the penalty/barrier parameter is estimated. There are established parameter selection rules which guarantee the overall convergence of the considered path-following penalty/barrier techniques.
Keywords: penalty/barrier, interior point methods, convex optimization
@article{DMDICO_2000_20_1_a0,
     author = {Grossmann, Christian},
     title = {Penalty/barrier path-following in linearly constrained optimization},
     journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization},
     pages = {7--26},
     publisher = {mathdoc},
     volume = {20},
     number = {1},
     year = {2000},
     zbl = {0980.90085},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a0/}
}
TY  - JOUR
AU  - Grossmann, Christian
TI  - Penalty/barrier path-following in linearly constrained optimization
JO  - Discussiones Mathematicae. Differential Inclusions, Control and Optimization
PY  - 2000
SP  - 7
EP  - 26
VL  - 20
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a0/
LA  - en
ID  - DMDICO_2000_20_1_a0
ER  - 
%0 Journal Article
%A Grossmann, Christian
%T Penalty/barrier path-following in linearly constrained optimization
%J Discussiones Mathematicae. Differential Inclusions, Control and Optimization
%D 2000
%P 7-26
%V 20
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a0/
%G en
%F DMDICO_2000_20_1_a0
Grossmann, Christian. Penalty/barrier path-following in linearly constrained optimization. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 1, pp. 7-26. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a0/

[1] D. Al-Mutairi, C. Grossmann and K.T. Vu, Path-following barrier and penalty methods for linearly constrained problems, Preprint MATH-NM-10-1998, TU Dresden 1998 (to appear in Optimization).

[2] A. Auslender, R. Cominetti and M. Haddou, Asymptotic analysis for penalty and barrier methods in convex and linear programming, Math. Operations Res. 22 (1997), 43-62.

[3] A. Ben-Tal and M. Zibulevsky, Penalty/barrier multiplier methods for convex programming problems, SIAM J. Optimization 7 (1997), 347-366.

[4] B. Chen and P.T. Harker, A noninterior continuation method for quadratic and linear programming, SIAM J. Optimization 3 (1993), 503-515.

[5] B. Chen and P.T. Harker, A continuation method for monotone variational inequalities, Math. Programming 69 (1995), 237-253.

[6] R. Cominetti and J.M. Peres-Cerda, Quadratic rate of convergence for a primal-dual exponential penalty algorithm, Optimization 39 (1997), 13-32.

[7] P. Deuflhard and F. Potra, Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem, SIAM J. Numer. Anal. 29 (1992), 1395-1412.

[8] J.-P. Dussault, Numerical stability and efficiency of penalty algorithms, SIAM J. Numer. Anal. 32 (1995), 296-317.

[9] A.V. Fiacco and G.P. McCormick, Nonlinear programming: Sequential unconstrained minimization techniques, Wiley, New York 1968.

[10] R.M. Freund and S. Mizuno, Interior point methods: current status and future directions, OPTIMA, Math. Programming Soc. Newsletter 51 (1996).

[11] C. Grossmann, Asymptotic analysis of a path-following barrier method for linearly constrained convex problems, Optimization 45 (1999), 69-88.

[12] C. Grossmann and A.A. Kaplan, Straf-Barriere-Verfahren und modifizierte Lagrangefunktionen in der nichtlinearen Optimierung, Teubner, Leipzig 1979.

[13] M. Halická and M. Hamala, Duality transformation functions in the interior point methods, Acta Math. Univ. Comenianae LXV (1996), 229-245.

[14] F.A. Lootsma, Boundary properties of penalty functions for constrained minimization, Philips Res. Rept. Suppl. 3 1970.

[15] S. Mizuno, F. Jarre and J. Stoer, A unified approach to infeasible-interior-point algorithms via geometric linear complementarity problems, Appl. Math. Optimization 33 (1996), 315-341.

[16] Yu. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming, SIAM Studies in Appl. Math., Philadelphia 1994.

[17] M.H. Wright, Ill-conditioning and computational error in interior methods for nonlinear programming, SIAM J. Opt. 9 (1998), 84-111.

[18] S.J. Wright, On the convergence of the Newton/Log-barrier method, Preprint ANL/MCS-P681-0897, MCS Division, Argonne National Lab., August 1997 (revised version 1999).

[19] H. Yamashita and H. Yabe, An interior point method with a primal-dual l₂ barrier penalty function for nonlinear optimization, Working paper, March 1999, University of Tokyo.