Voir la notice de l'article provenant de la source Library of Science
@article{DMDICO_2000_20_1_a0, author = {Grossmann, Christian}, title = {Penalty/barrier path-following in linearly constrained optimization}, journal = {Discussiones Mathematicae. Differential Inclusions, Control and Optimization}, pages = {7--26}, publisher = {mathdoc}, volume = {20}, number = {1}, year = {2000}, zbl = {0980.90085}, language = {en}, url = {http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a0/} }
TY - JOUR AU - Grossmann, Christian TI - Penalty/barrier path-following in linearly constrained optimization JO - Discussiones Mathematicae. Differential Inclusions, Control and Optimization PY - 2000 SP - 7 EP - 26 VL - 20 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a0/ LA - en ID - DMDICO_2000_20_1_a0 ER -
%0 Journal Article %A Grossmann, Christian %T Penalty/barrier path-following in linearly constrained optimization %J Discussiones Mathematicae. Differential Inclusions, Control and Optimization %D 2000 %P 7-26 %V 20 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a0/ %G en %F DMDICO_2000_20_1_a0
Grossmann, Christian. Penalty/barrier path-following in linearly constrained optimization. Discussiones Mathematicae. Differential Inclusions, Control and Optimization, Tome 20 (2000) no. 1, pp. 7-26. http://geodesic.mathdoc.fr/item/DMDICO_2000_20_1_a0/
[1] D. Al-Mutairi, C. Grossmann and K.T. Vu, Path-following barrier and penalty methods for linearly constrained problems, Preprint MATH-NM-10-1998, TU Dresden 1998 (to appear in Optimization).
[2] A. Auslender, R. Cominetti and M. Haddou, Asymptotic analysis for penalty and barrier methods in convex and linear programming, Math. Operations Res. 22 (1997), 43-62.
[3] A. Ben-Tal and M. Zibulevsky, Penalty/barrier multiplier methods for convex programming problems, SIAM J. Optimization 7 (1997), 347-366.
[4] B. Chen and P.T. Harker, A noninterior continuation method for quadratic and linear programming, SIAM J. Optimization 3 (1993), 503-515.
[5] B. Chen and P.T. Harker, A continuation method for monotone variational inequalities, Math. Programming 69 (1995), 237-253.
[6] R. Cominetti and J.M. Peres-Cerda, Quadratic rate of convergence for a primal-dual exponential penalty algorithm, Optimization 39 (1997), 13-32.
[7] P. Deuflhard and F. Potra, Asymptotic mesh independence of Newton-Galerkin methods via a refined Mysovskii theorem, SIAM J. Numer. Anal. 29 (1992), 1395-1412.
[8] J.-P. Dussault, Numerical stability and efficiency of penalty algorithms, SIAM J. Numer. Anal. 32 (1995), 296-317.
[9] A.V. Fiacco and G.P. McCormick, Nonlinear programming: Sequential unconstrained minimization techniques, Wiley, New York 1968.
[10] R.M. Freund and S. Mizuno, Interior point methods: current status and future directions, OPTIMA, Math. Programming Soc. Newsletter 51 (1996).
[11] C. Grossmann, Asymptotic analysis of a path-following barrier method for linearly constrained convex problems, Optimization 45 (1999), 69-88.
[12] C. Grossmann and A.A. Kaplan, Straf-Barriere-Verfahren und modifizierte Lagrangefunktionen in der nichtlinearen Optimierung, Teubner, Leipzig 1979.
[13] M. Halická and M. Hamala, Duality transformation functions in the interior point methods, Acta Math. Univ. Comenianae LXV (1996), 229-245.
[14] F.A. Lootsma, Boundary properties of penalty functions for constrained minimization, Philips Res. Rept. Suppl. 3 1970.
[15] S. Mizuno, F. Jarre and J. Stoer, A unified approach to infeasible-interior-point algorithms via geometric linear complementarity problems, Appl. Math. Optimization 33 (1996), 315-341.
[16] Yu. Nesterov and A. Nemirovskii, Interior-point polynomial algorithms in convex programming, SIAM Studies in Appl. Math., Philadelphia 1994.
[17] M.H. Wright, Ill-conditioning and computational error in interior methods for nonlinear programming, SIAM J. Opt. 9 (1998), 84-111.
[18] S.J. Wright, On the convergence of the Newton/Log-barrier method, Preprint ANL/MCS-P681-0897, MCS Division, Argonne National Lab., August 1997 (revised version 1999).
[19] H. Yamashita and H. Yabe, An interior point method with a primal-dual l₂ barrier penalty function for nonlinear optimization, Working paper, March 1999, University of Tokyo.