An estimate for the global error of the adams method on long intervals
Differencialʹnye uravneniâ, Tome 42 (2006) no. 7, pp. 924-931.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2006_42_7_a6,
     author = {N. D. Zolotareva},
     title = {An estimate for the global error of the adams method on long intervals},
     journal = {Differencialʹnye uravneni\^a},
     pages = {924--931},
     publisher = {mathdoc},
     volume = {42},
     number = {7},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2006_42_7_a6/}
}
TY  - JOUR
AU  - N. D. Zolotareva
TI  - An estimate for the global error of the adams method on long intervals
JO  - Differencialʹnye uravneniâ
PY  - 2006
SP  - 924
EP  - 931
VL  - 42
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2006_42_7_a6/
LA  - ru
ID  - DE_2006_42_7_a6
ER  - 
%0 Journal Article
%A N. D. Zolotareva
%T An estimate for the global error of the adams method on long intervals
%J Differencialʹnye uravneniâ
%D 2006
%P 924-931
%V 42
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2006_42_7_a6/
%G ru
%F DE_2006_42_7_a6
N. D. Zolotareva. An estimate for the global error of the adams method on long intervals. Differencialʹnye uravneniâ, Tome 42 (2006) no. 7, pp. 924-931. http://geodesic.mathdoc.fr/item/DE_2006_42_7_a6/