Basis property in $L_p(0,1)$ of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition
Differencialʹnye uravneniâ, Tome 42 (2006) no. 6, pp. 847-849.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2006_42_6_a14,
     author = {D. B. Marchenkov},
     title = {Basis property in $L_p(0,1)$ of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition},
     journal = {Differencialʹnye uravneni\^a},
     pages = {847--849},
     publisher = {mathdoc},
     volume = {42},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2006_42_6_a14/}
}
TY  - JOUR
AU  - D. B. Marchenkov
TI  - Basis property in $L_p(0,1)$ of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition
JO  - Differencialʹnye uravneniâ
PY  - 2006
SP  - 847
EP  - 849
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2006_42_6_a14/
LA  - ru
ID  - DE_2006_42_6_a14
ER  - 
%0 Journal Article
%A D. B. Marchenkov
%T Basis property in $L_p(0,1)$ of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition
%J Differencialʹnye uravneniâ
%D 2006
%P 847-849
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2006_42_6_a14/
%G ru
%F DE_2006_42_6_a14
D. B. Marchenkov. Basis property in $L_p(0,1)$ of the system of eigenfunctions corresponding to a problem with a spectral parameter in the boundary condition. Differencialʹnye uravneniâ, Tome 42 (2006) no. 6, pp. 847-849. http://geodesic.mathdoc.fr/item/DE_2006_42_6_a14/