Conditions for the $k$-fold completeness ($0$) of root functions of an $n$th-order ordinary differential operator pencil
Differencialʹnye uravneniâ, Tome 42 (2006) no. 6, pp. 723-730.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2006_42_6_a0,
     author = {A. I. Vagabov and Z. A. Abdurakhmanov},
     title = {Conditions for the $k$-fold completeness ($0<k\le n$) of root functions of an $n$th-order ordinary differential operator pencil},
     journal = {Differencialʹnye uravneni\^a},
     pages = {723--730},
     publisher = {mathdoc},
     volume = {42},
     number = {6},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2006_42_6_a0/}
}
TY  - JOUR
AU  - A. I. Vagabov
AU  - Z. A. Abdurakhmanov
TI  - Conditions for the $k$-fold completeness ($0
JO  - Differencialʹnye uravneniâ
PY  - 2006
SP  - 723
EP  - 730
VL  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2006_42_6_a0/
LA  - ru
ID  - DE_2006_42_6_a0
ER  - 
%0 Journal Article
%A A. I. Vagabov
%A Z. A. Abdurakhmanov
%T Conditions for the $k$-fold completeness ($0
%J Differencialʹnye uravneniâ
%D 2006
%P 723-730
%V 42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2006_42_6_a0/
%G ru
%F DE_2006_42_6_a0
A. I. Vagabov; Z. A. Abdurakhmanov. Conditions for the $k$-fold completeness ($0