The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems
Differencialʹnye uravneniâ, Tome 42 (2006) no. 2, pp. 233-238
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2006_42_2_a10,
author = {S. V. Zhestkov and P. P. Zabreiko},
title = {The majorant method and the fixed point principle in nonlocal theory of the {Cauchy} problem for normal partial differential systems},
journal = {Differencialʹnye uravneni\^a},
pages = {233--238},
year = {2006},
volume = {42},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2006_42_2_a10/}
}
TY - JOUR AU - S. V. Zhestkov AU - P. P. Zabreiko TI - The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems JO - Differencialʹnye uravneniâ PY - 2006 SP - 233 EP - 238 VL - 42 IS - 2 UR - http://geodesic.mathdoc.fr/item/DE_2006_42_2_a10/ LA - ru ID - DE_2006_42_2_a10 ER -
%0 Journal Article %A S. V. Zhestkov %A P. P. Zabreiko %T The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems %J Differencialʹnye uravneniâ %D 2006 %P 233-238 %V 42 %N 2 %U http://geodesic.mathdoc.fr/item/DE_2006_42_2_a10/ %G ru %F DE_2006_42_2_a10
S. V. Zhestkov; P. P. Zabreiko. The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems. Differencialʹnye uravneniâ, Tome 42 (2006) no. 2, pp. 233-238. http://geodesic.mathdoc.fr/item/DE_2006_42_2_a10/