The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems
Differencialʹnye uravneniâ, Tome 42 (2006) no. 2, pp. 233-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2006_42_2_a10,
     author = {S. V. Zhestkov and P. P. Zabreiko},
     title = {The majorant method and the fixed point principle in nonlocal theory of the {Cauchy} problem for normal partial differential systems},
     journal = {Differencialʹnye uravneni\^a},
     pages = {233--238},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2006_42_2_a10/}
}
TY  - JOUR
AU  - S. V. Zhestkov
AU  - P. P. Zabreiko
TI  - The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems
JO  - Differencialʹnye uravneniâ
PY  - 2006
SP  - 233
EP  - 238
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2006_42_2_a10/
LA  - ru
ID  - DE_2006_42_2_a10
ER  - 
%0 Journal Article
%A S. V. Zhestkov
%A P. P. Zabreiko
%T The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems
%J Differencialʹnye uravneniâ
%D 2006
%P 233-238
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2006_42_2_a10/
%G ru
%F DE_2006_42_2_a10
S. V. Zhestkov; P. P. Zabreiko. The majorant method and the fixed point principle in nonlocal theory of the Cauchy problem for normal partial differential systems. Differencialʹnye uravneniâ, Tome 42 (2006) no. 2, pp. 233-238. http://geodesic.mathdoc.fr/item/DE_2006_42_2_a10/