Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_2006_42_11_a12, author = {V. A. Il'in and E. I. Moiseev}, title = {Minimization of the $L_p$-norm with arbitrary $p\ge1$ of the derivative of a boundary displacement control on an arbitrary sufficiently large time interval~$T$}, journal = {Differencialʹnye uravneni\^a}, pages = {1558--1570}, publisher = {mathdoc}, volume = {42}, number = {11}, year = {2006}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_2006_42_11_a12/} }
TY - JOUR AU - V. A. Il'in AU - E. I. Moiseev TI - Minimization of the $L_p$-norm with arbitrary $p\ge1$ of the derivative of a boundary displacement control on an arbitrary sufficiently large time interval~$T$ JO - Differencialʹnye uravneniâ PY - 2006 SP - 1558 EP - 1570 VL - 42 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_2006_42_11_a12/ LA - ru ID - DE_2006_42_11_a12 ER -
%0 Journal Article %A V. A. Il'in %A E. I. Moiseev %T Minimization of the $L_p$-norm with arbitrary $p\ge1$ of the derivative of a boundary displacement control on an arbitrary sufficiently large time interval~$T$ %J Differencialʹnye uravneniâ %D 2006 %P 1558-1570 %V 42 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_2006_42_11_a12/ %G ru %F DE_2006_42_11_a12
V. A. Il'in; E. I. Moiseev. Minimization of the $L_p$-norm with arbitrary $p\ge1$ of the derivative of a boundary displacement control on an arbitrary sufficiently large time interval~$T$. Differencialʹnye uravneniâ, Tome 42 (2006) no. 11, pp. 1558-1570. http://geodesic.mathdoc.fr/item/DE_2006_42_11_a12/