On the approximate solution of weakly singular integro-differential equations of Volterra type
Differencialʹnye uravneniâ, Tome 40 (2004) no. 9, pp. 1271-1279.

Voir la notice de l'article provenant de la source Math-Net.Ru

Recently, the convergence rate of the collocation method for integral and integro-differential equations with weakly singular kernels has been studied in a series of papers [1–7]. The present paper belongs to the same series. We analyze the possibility of constructing approximate solutions of high-order accuracy on a uniform or almost uniform grid for weakly singular integro-differential equations of Volterra type.
@article{DE_2004_40_9_a12,
     author = {A. Pedas},
     title = {On the approximate solution of weakly singular integro-differential equations of {Volterra} type},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1271--1279},
     publisher = {mathdoc},
     volume = {40},
     number = {9},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2004_40_9_a12/}
}
TY  - JOUR
AU  - A. Pedas
TI  - On the approximate solution of weakly singular integro-differential equations of Volterra type
JO  - Differencialʹnye uravneniâ
PY  - 2004
SP  - 1271
EP  - 1279
VL  - 40
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2004_40_9_a12/
LA  - ru
ID  - DE_2004_40_9_a12
ER  - 
%0 Journal Article
%A A. Pedas
%T On the approximate solution of weakly singular integro-differential equations of Volterra type
%J Differencialʹnye uravneniâ
%D 2004
%P 1271-1279
%V 40
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2004_40_9_a12/
%G ru
%F DE_2004_40_9_a12
A. Pedas. On the approximate solution of weakly singular integro-differential equations of Volterra type. Differencialʹnye uravneniâ, Tome 40 (2004) no. 9, pp. 1271-1279. http://geodesic.mathdoc.fr/item/DE_2004_40_9_a12/