How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately
Differencialʹnye uravneniâ, Tome 40 (2004) no. 8, pp. 1108-1117
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2004_40_8_a10,
author = {I. P. Ryazantseva},
title = {How to {Approximate} {Solutions} of {Variational} {Inequalities} with {Monotone} {Mappings} in a {Banach} {Space} {If} the {Data} {Are} {Known} {Approximately}},
journal = {Differencialʹnye uravneni\^a},
pages = {1108--1117},
year = {2004},
volume = {40},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2004_40_8_a10/}
}
TY - JOUR AU - I. P. Ryazantseva TI - How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately JO - Differencialʹnye uravneniâ PY - 2004 SP - 1108 EP - 1117 VL - 40 IS - 8 UR - http://geodesic.mathdoc.fr/item/DE_2004_40_8_a10/ LA - ru ID - DE_2004_40_8_a10 ER -
%0 Journal Article %A I. P. Ryazantseva %T How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately %J Differencialʹnye uravneniâ %D 2004 %P 1108-1117 %V 40 %N 8 %U http://geodesic.mathdoc.fr/item/DE_2004_40_8_a10/ %G ru %F DE_2004_40_8_a10
I. P. Ryazantseva. How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately. Differencialʹnye uravneniâ, Tome 40 (2004) no. 8, pp. 1108-1117. http://geodesic.mathdoc.fr/item/DE_2004_40_8_a10/