How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately
Differencialʹnye uravneniâ, Tome 40 (2004) no. 8, pp. 1108-1117.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2004_40_8_a10,
     author = {I. P. Ryazantseva},
     title = {How to {Approximate} {Solutions} of {Variational} {Inequalities} with {Monotone} {Mappings} in a {Banach} {Space} {If} the {Data} {Are} {Known} {Approximately}},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1108--1117},
     publisher = {mathdoc},
     volume = {40},
     number = {8},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2004_40_8_a10/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately
JO  - Differencialʹnye uravneniâ
PY  - 2004
SP  - 1108
EP  - 1117
VL  - 40
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2004_40_8_a10/
LA  - ru
ID  - DE_2004_40_8_a10
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately
%J Differencialʹnye uravneniâ
%D 2004
%P 1108-1117
%V 40
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2004_40_8_a10/
%G ru
%F DE_2004_40_8_a10
I. P. Ryazantseva. How to Approximate Solutions of Variational Inequalities with Monotone Mappings in a Banach Space If the Data Are Known Approximately. Differencialʹnye uravneniâ, Tome 40 (2004) no. 8, pp. 1108-1117. http://geodesic.mathdoc.fr/item/DE_2004_40_8_a10/