An approximation scheme for defining the Conley index of isolated critical points
Differencialʹnye uravneniâ, Tome 40 (2004) no. 11, pp. 1462-1467.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study isolated critical points of functionals dened on a real separable Hilbert space $H$ and satisfying the $H$-properness condition. We introduce the notion of Conley index of an isolated critical point and prove that it is homotopy invariant. The scheme suggested here for defining the Conley index is based on the application of finite-dimensional Conley index theory to finite-dimensional restrictions of the functional to be studied.
@article{DE_2004_40_11_a2,
     author = {N. A. Bobylev and A. V. Bulatov and Yu. O. Kuznetsov},
     title = {An approximation scheme for defining the {Conley} index of isolated critical points},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1462--1467},
     publisher = {mathdoc},
     volume = {40},
     number = {11},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2004_40_11_a2/}
}
TY  - JOUR
AU  - N. A. Bobylev
AU  - A. V. Bulatov
AU  - Yu. O. Kuznetsov
TI  - An approximation scheme for defining the Conley index of isolated critical points
JO  - Differencialʹnye uravneniâ
PY  - 2004
SP  - 1462
EP  - 1467
VL  - 40
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2004_40_11_a2/
LA  - ru
ID  - DE_2004_40_11_a2
ER  - 
%0 Journal Article
%A N. A. Bobylev
%A A. V. Bulatov
%A Yu. O. Kuznetsov
%T An approximation scheme for defining the Conley index of isolated critical points
%J Differencialʹnye uravneniâ
%D 2004
%P 1462-1467
%V 40
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2004_40_11_a2/
%G ru
%F DE_2004_40_11_a2
N. A. Bobylev; A. V. Bulatov; Yu. O. Kuznetsov. An approximation scheme for defining the Conley index of isolated critical points. Differencialʹnye uravneniâ, Tome 40 (2004) no. 11, pp. 1462-1467. http://geodesic.mathdoc.fr/item/DE_2004_40_11_a2/