An approximation scheme for defining the Conley index of isolated critical points
Differencialʹnye uravneniâ, Tome 40 (2004) no. 11, pp. 1462-1467
Cet article a éte moissonné depuis la source Math-Net.Ru
In the present paper, we study isolated critical points of functionals dened on a real separable Hilbert space $H$ and satisfying the $H$-properness condition. We introduce the notion of Conley index of an isolated critical point and prove that it is homotopy invariant. The scheme suggested here for defining the Conley index is based on the application of finite-dimensional Conley index theory to finite-dimensional restrictions of the functional to be studied.
@article{DE_2004_40_11_a2,
author = {N. A. Bobylev and A. V. Bulatov and Yu. O. Kuznetsov},
title = {An approximation scheme for defining the {Conley} index of isolated critical points},
journal = {Differencialʹnye uravneni\^a},
pages = {1462--1467},
year = {2004},
volume = {40},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2004_40_11_a2/}
}
TY - JOUR AU - N. A. Bobylev AU - A. V. Bulatov AU - Yu. O. Kuznetsov TI - An approximation scheme for defining the Conley index of isolated critical points JO - Differencialʹnye uravneniâ PY - 2004 SP - 1462 EP - 1467 VL - 40 IS - 11 UR - http://geodesic.mathdoc.fr/item/DE_2004_40_11_a2/ LA - ru ID - DE_2004_40_11_a2 ER -
N. A. Bobylev; A. V. Bulatov; Yu. O. Kuznetsov. An approximation scheme for defining the Conley index of isolated critical points. Differencialʹnye uravneniâ, Tome 40 (2004) no. 11, pp. 1462-1467. http://geodesic.mathdoc.fr/item/DE_2004_40_11_a2/