The Characteristic Sets of Multidimensional Equations with Respect to a Polyhedral Cone Can Be Nonclosed
Differencialʹnye uravneniâ, Tome 39 (2003) no. 4, pp. 560-562.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2003_39_4_a14,
     author = {E. K. Makarov},
     title = {The {Characteristic} {Sets} of {Multidimensional} {Equations} with {Respect} to a {Polyhedral} {Cone} {Can} {Be} {Nonclosed}},
     journal = {Differencialʹnye uravneni\^a},
     pages = {560--562},
     publisher = {mathdoc},
     volume = {39},
     number = {4},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2003_39_4_a14/}
}
TY  - JOUR
AU  - E. K. Makarov
TI  - The Characteristic Sets of Multidimensional Equations with Respect to a Polyhedral Cone Can Be Nonclosed
JO  - Differencialʹnye uravneniâ
PY  - 2003
SP  - 560
EP  - 562
VL  - 39
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2003_39_4_a14/
LA  - ru
ID  - DE_2003_39_4_a14
ER  - 
%0 Journal Article
%A E. K. Makarov
%T The Characteristic Sets of Multidimensional Equations with Respect to a Polyhedral Cone Can Be Nonclosed
%J Differencialʹnye uravneniâ
%D 2003
%P 560-562
%V 39
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2003_39_4_a14/
%G ru
%F DE_2003_39_4_a14
E. K. Makarov. The Characteristic Sets of Multidimensional Equations with Respect to a Polyhedral Cone Can Be Nonclosed. Differencialʹnye uravneniâ, Tome 39 (2003) no. 4, pp. 560-562. http://geodesic.mathdoc.fr/item/DE_2003_39_4_a14/