Accuracy-Optimal Approximate Methods for Solving Volterra Integral Equations
Differencialʹnye uravneniâ, Tome 38 (2002) no. 9, pp. 1225-1232.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2002_38_9_a8,
     author = {I. V. Boykov and A. N. Tynda},
     title = {Accuracy-Optimal {Approximate} {Methods} for {Solving} {Volterra} {Integral} {Equations}},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1225--1232},
     publisher = {mathdoc},
     volume = {38},
     number = {9},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2002_38_9_a8/}
}
TY  - JOUR
AU  - I. V. Boykov
AU  - A. N. Tynda
TI  - Accuracy-Optimal Approximate Methods for Solving Volterra Integral Equations
JO  - Differencialʹnye uravneniâ
PY  - 2002
SP  - 1225
EP  - 1232
VL  - 38
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2002_38_9_a8/
LA  - ru
ID  - DE_2002_38_9_a8
ER  - 
%0 Journal Article
%A I. V. Boykov
%A A. N. Tynda
%T Accuracy-Optimal Approximate Methods for Solving Volterra Integral Equations
%J Differencialʹnye uravneniâ
%D 2002
%P 1225-1232
%V 38
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2002_38_9_a8/
%G ru
%F DE_2002_38_9_a8
I. V. Boykov; A. N. Tynda. Accuracy-Optimal Approximate Methods for Solving Volterra Integral Equations. Differencialʹnye uravneniâ, Tome 38 (2002) no. 9, pp. 1225-1232. http://geodesic.mathdoc.fr/item/DE_2002_38_9_a8/