Optimization of the One-Endpoint Boundary Control of Vibrations for the Case in Which the Other Endpoint Is Fixed and Energy Is Bounded
Differencialʹnye uravneniâ, Tome 38 (2002) no. 2, pp. 277-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2002_38_2_a16,
     author = {G. D. Chabakauri},
     title = {Optimization of the {One-Endpoint} {Boundary} {Control} of {Vibrations} for the {Case} in {Which} the {Other} {Endpoint} {Is} {Fixed} and {Energy} {Is} {Bounded}},
     journal = {Differencialʹnye uravneni\^a},
     pages = {277--284},
     publisher = {mathdoc},
     volume = {38},
     number = {2},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2002_38_2_a16/}
}
TY  - JOUR
AU  - G. D. Chabakauri
TI  - Optimization of the One-Endpoint Boundary Control of Vibrations for the Case in Which the Other Endpoint Is Fixed and Energy Is Bounded
JO  - Differencialʹnye uravneniâ
PY  - 2002
SP  - 277
EP  - 284
VL  - 38
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2002_38_2_a16/
LA  - ru
ID  - DE_2002_38_2_a16
ER  - 
%0 Journal Article
%A G. D. Chabakauri
%T Optimization of the One-Endpoint Boundary Control of Vibrations for the Case in Which the Other Endpoint Is Fixed and Energy Is Bounded
%J Differencialʹnye uravneniâ
%D 2002
%P 277-284
%V 38
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2002_38_2_a16/
%G ru
%F DE_2002_38_2_a16
G. D. Chabakauri. Optimization of the One-Endpoint Boundary Control of Vibrations for the Case in Which the Other Endpoint Is Fixed and Energy Is Bounded. Differencialʹnye uravneniâ, Tome 38 (2002) no. 2, pp. 277-284. http://geodesic.mathdoc.fr/item/DE_2002_38_2_a16/