Optimization of the One-Endpoint Boundary Control of Vibrations for the Case in Which the Other Endpoint Is Fixed and Energy Is Bounded
Differencialʹnye uravneniâ, Tome 38 (2002) no. 2, pp. 277-284
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2002_38_2_a16,
author = {G. D. Chabakauri},
title = {Optimization of the {One-Endpoint} {Boundary} {Control} of {Vibrations} for the {Case} in {Which} the {Other} {Endpoint} {Is} {Fixed} and {Energy} {Is} {Bounded}},
journal = {Differencialʹnye uravneni\^a},
pages = {277--284},
year = {2002},
volume = {38},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2002_38_2_a16/}
}
TY - JOUR AU - G. D. Chabakauri TI - Optimization of the One-Endpoint Boundary Control of Vibrations for the Case in Which the Other Endpoint Is Fixed and Energy Is Bounded JO - Differencialʹnye uravneniâ PY - 2002 SP - 277 EP - 284 VL - 38 IS - 2 UR - http://geodesic.mathdoc.fr/item/DE_2002_38_2_a16/ LA - ru ID - DE_2002_38_2_a16 ER -
%0 Journal Article %A G. D. Chabakauri %T Optimization of the One-Endpoint Boundary Control of Vibrations for the Case in Which the Other Endpoint Is Fixed and Energy Is Bounded %J Differencialʹnye uravneniâ %D 2002 %P 277-284 %V 38 %N 2 %U http://geodesic.mathdoc.fr/item/DE_2002_38_2_a16/ %G ru %F DE_2002_38_2_a16
G. D. Chabakauri. Optimization of the One-Endpoint Boundary Control of Vibrations for the Case in Which the Other Endpoint Is Fixed and Energy Is Bounded. Differencialʹnye uravneniâ, Tome 38 (2002) no. 2, pp. 277-284. http://geodesic.mathdoc.fr/item/DE_2002_38_2_a16/