New Versions of Spline Methods for Linear Integral Equations Whose Kernels Have Fixed Singularities
Differencialʹnye uravneniâ, Tome 38 (2002) no. 12, pp. 1673-1679.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2002_38_12_a10,
     author = {N. S. Gabbasov},
     title = {New {Versions} of {Spline} {Methods} for {Linear} {Integral} {Equations} {Whose} {Kernels} {Have} {Fixed} {Singularities}},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1673--1679},
     publisher = {mathdoc},
     volume = {38},
     number = {12},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2002_38_12_a10/}
}
TY  - JOUR
AU  - N. S. Gabbasov
TI  - New Versions of Spline Methods for Linear Integral Equations Whose Kernels Have Fixed Singularities
JO  - Differencialʹnye uravneniâ
PY  - 2002
SP  - 1673
EP  - 1679
VL  - 38
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2002_38_12_a10/
LA  - ru
ID  - DE_2002_38_12_a10
ER  - 
%0 Journal Article
%A N. S. Gabbasov
%T New Versions of Spline Methods for Linear Integral Equations Whose Kernels Have Fixed Singularities
%J Differencialʹnye uravneniâ
%D 2002
%P 1673-1679
%V 38
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2002_38_12_a10/
%G ru
%F DE_2002_38_12_a10
N. S. Gabbasov. New Versions of Spline Methods for Linear Integral Equations Whose Kernels Have Fixed Singularities. Differencialʹnye uravneniâ, Tome 38 (2002) no. 12, pp. 1673-1679. http://geodesic.mathdoc.fr/item/DE_2002_38_12_a10/