Voir la notice de l'article provenant de la source Math-Net.Ru
@article{DE_2002_38_11_a7, author = {M. S. Nikol'skii}, title = {Continuity and the {Lipschitz} {Property} of the {Bellman} {Function} in {Some} {Optimization} {Problems} on the {Semi-Infinite} {Interval} $[0,+\infty)$}, journal = {Differencialʹnye uravneni\^a}, pages = {1506--1510}, publisher = {mathdoc}, volume = {38}, number = {11}, year = {2002}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/} }
TY - JOUR AU - M. S. Nikol'skii TI - Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$ JO - Differencialʹnye uravneniâ PY - 2002 SP - 1506 EP - 1510 VL - 38 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/ LA - ru ID - DE_2002_38_11_a7 ER -
%0 Journal Article %A M. S. Nikol'skii %T Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$ %J Differencialʹnye uravneniâ %D 2002 %P 1506-1510 %V 38 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/ %G ru %F DE_2002_38_11_a7
M. S. Nikol'skii. Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$. Differencialʹnye uravneniâ, Tome 38 (2002) no. 11, pp. 1506-1510. http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/