Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$
Differencialʹnye uravneniâ, Tome 38 (2002) no. 11, pp. 1506-1510
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2002_38_11_a7,
author = {M. S. Nikol'skii},
title = {Continuity and the {Lipschitz} {Property} of the {Bellman} {Function} in {Some} {Optimization} {Problems} on the {Semi-Infinite} {Interval} $[0,+\infty)$},
journal = {Differencialʹnye uravneni\^a},
pages = {1506--1510},
year = {2002},
volume = {38},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/}
}
TY - JOUR AU - M. S. Nikol'skii TI - Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$ JO - Differencialʹnye uravneniâ PY - 2002 SP - 1506 EP - 1510 VL - 38 IS - 11 UR - http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/ LA - ru ID - DE_2002_38_11_a7 ER -
%0 Journal Article %A M. S. Nikol'skii %T Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$ %J Differencialʹnye uravneniâ %D 2002 %P 1506-1510 %V 38 %N 11 %U http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/ %G ru %F DE_2002_38_11_a7
M. S. Nikol'skii. Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$. Differencialʹnye uravneniâ, Tome 38 (2002) no. 11, pp. 1506-1510. http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/