Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$
Differencialʹnye uravneniâ, Tome 38 (2002) no. 11, pp. 1506-1510.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2002_38_11_a7,
     author = {M. S. Nikol'skii},
     title = {Continuity and the {Lipschitz} {Property} of the {Bellman} {Function} in {Some} {Optimization} {Problems} on the {Semi-Infinite} {Interval} $[0,+\infty)$},
     journal = {Differencialʹnye uravneni\^a},
     pages = {1506--1510},
     publisher = {mathdoc},
     volume = {38},
     number = {11},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/}
}
TY  - JOUR
AU  - M. S. Nikol'skii
TI  - Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$
JO  - Differencialʹnye uravneniâ
PY  - 2002
SP  - 1506
EP  - 1510
VL  - 38
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/
LA  - ru
ID  - DE_2002_38_11_a7
ER  - 
%0 Journal Article
%A M. S. Nikol'skii
%T Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$
%J Differencialʹnye uravneniâ
%D 2002
%P 1506-1510
%V 38
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/
%G ru
%F DE_2002_38_11_a7
M. S. Nikol'skii. Continuity and the Lipschitz Property of the Bellman Function in Some Optimization Problems on the Semi-Infinite Interval $[0,+\infty)$. Differencialʹnye uravneniâ, Tome 38 (2002) no. 11, pp. 1506-1510. http://geodesic.mathdoc.fr/item/DE_2002_38_11_a7/