A Spectral Theorem for Sturm–Liouville Operators with Potentials That Are Finite Sums of Exponentials
Differencialʹnye uravneniâ, Tome 37 (2001) no. 8, pp. 1028-1040
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2001_37_8_a1,
author = {A. Yu. Andrianov},
title = {A {Spectral} {Theorem} for {Sturm{\textendash}Liouville} {Operators} with {Potentials} {That} {Are} {Finite} {Sums} of {Exponentials}},
journal = {Differencialʹnye uravneni\^a},
pages = {1028--1040},
year = {2001},
volume = {37},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2001_37_8_a1/}
}
TY - JOUR AU - A. Yu. Andrianov TI - A Spectral Theorem for Sturm–Liouville Operators with Potentials That Are Finite Sums of Exponentials JO - Differencialʹnye uravneniâ PY - 2001 SP - 1028 EP - 1040 VL - 37 IS - 8 UR - http://geodesic.mathdoc.fr/item/DE_2001_37_8_a1/ LA - ru ID - DE_2001_37_8_a1 ER -
A. Yu. Andrianov. A Spectral Theorem for Sturm–Liouville Operators with Potentials That Are Finite Sums of Exponentials. Differencialʹnye uravneniâ, Tome 37 (2001) no. 8, pp. 1028-1040. http://geodesic.mathdoc.fr/item/DE_2001_37_8_a1/