On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form
Differencialʹnye uravneniâ, Tome 37 (2001) no. 2, pp. 212-217
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2001_37_2_a7,
author = {G. A. Kurina and G. V. Martynenko},
title = {On the {Reducibility} of a {Nonnegatively} {Hamiltonian} {Periodic} {Operator} {Function} in a {Real} {Hilbert} {Space} to a {Block} {Diagonal} {Form}},
journal = {Differencialʹnye uravneni\^a},
pages = {212--217},
year = {2001},
volume = {37},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2001_37_2_a7/}
}
TY - JOUR AU - G. A. Kurina AU - G. V. Martynenko TI - On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form JO - Differencialʹnye uravneniâ PY - 2001 SP - 212 EP - 217 VL - 37 IS - 2 UR - http://geodesic.mathdoc.fr/item/DE_2001_37_2_a7/ LA - ru ID - DE_2001_37_2_a7 ER -
%0 Journal Article %A G. A. Kurina %A G. V. Martynenko %T On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form %J Differencialʹnye uravneniâ %D 2001 %P 212-217 %V 37 %N 2 %U http://geodesic.mathdoc.fr/item/DE_2001_37_2_a7/ %G ru %F DE_2001_37_2_a7
G. A. Kurina; G. V. Martynenko. On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form. Differencialʹnye uravneniâ, Tome 37 (2001) no. 2, pp. 212-217. http://geodesic.mathdoc.fr/item/DE_2001_37_2_a7/