On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form
Differencialʹnye uravneniâ, Tome 37 (2001) no. 2, pp. 212-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{DE_2001_37_2_a7,
     author = {G. A. Kurina and G. V. Martynenko},
     title = {On the {Reducibility} of a {Nonnegatively} {Hamiltonian} {Periodic} {Operator} {Function} in a {Real} {Hilbert} {Space} to a {Block} {Diagonal} {Form}},
     journal = {Differencialʹnye uravneni\^a},
     pages = {212--217},
     publisher = {mathdoc},
     volume = {37},
     number = {2},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/DE_2001_37_2_a7/}
}
TY  - JOUR
AU  - G. A. Kurina
AU  - G. V. Martynenko
TI  - On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form
JO  - Differencialʹnye uravneniâ
PY  - 2001
SP  - 212
EP  - 217
VL  - 37
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/DE_2001_37_2_a7/
LA  - ru
ID  - DE_2001_37_2_a7
ER  - 
%0 Journal Article
%A G. A. Kurina
%A G. V. Martynenko
%T On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form
%J Differencialʹnye uravneniâ
%D 2001
%P 212-217
%V 37
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/DE_2001_37_2_a7/
%G ru
%F DE_2001_37_2_a7
G. A. Kurina; G. V. Martynenko. On the Reducibility of a Nonnegatively Hamiltonian Periodic Operator Function in a Real Hilbert Space to a Block Diagonal Form. Differencialʹnye uravneniâ, Tome 37 (2001) no. 2, pp. 212-217. http://geodesic.mathdoc.fr/item/DE_2001_37_2_a7/