An a priori estimate for the norms of solutions of the Dirichlet problem for a class of regular operators
Differencialʹnye uravneniâ, Tome 36 (2000) no. 3, pp. 365-371
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{DE_2000_36_3_a8,
author = {A. G. Bagdasarian},
title = {An a priori estimate for the norms of solutions of the {Dirichlet} problem for a class of regular operators},
journal = {Differencialʹnye uravneni\^a},
pages = {365--371},
year = {2000},
volume = {36},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/DE_2000_36_3_a8/}
}
TY - JOUR AU - A. G. Bagdasarian TI - An a priori estimate for the norms of solutions of the Dirichlet problem for a class of regular operators JO - Differencialʹnye uravneniâ PY - 2000 SP - 365 EP - 371 VL - 36 IS - 3 UR - http://geodesic.mathdoc.fr/item/DE_2000_36_3_a8/ LA - ru ID - DE_2000_36_3_a8 ER -
A. G. Bagdasarian. An a priori estimate for the norms of solutions of the Dirichlet problem for a class of regular operators. Differencialʹnye uravneniâ, Tome 36 (2000) no. 3, pp. 365-371. http://geodesic.mathdoc.fr/item/DE_2000_36_3_a8/